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Resumo

O escoamento interno em 9 tubos corrugados com passo (p = 6, 9, 12 mm) e altura de corrugação

(e = 0.4, 0.5, 0.6 mm), de regime Re = 100 − 3000, foram estudados neste trabalho para optimizar o

escoamento e verificar a influência da geometria de corrugação em perdas de pressão e transferência

de calor. Com água como fluido e fluxo de calor constante imposto na parede, 100 kW/m2, foi desen-

volvido um modelo numérico com o CFD software STAR-CCM+, onde o modelo k−ω SST foi usado para

modelar a turbulência. Os resultados numéricos obtidos foram validados com os dados experimentais

diponı́veis. Estes demonstram que a corrugação induz vórtices que promovem regiões de recirculação

de escoamento que diminuem o Reynolds crı́tico e antecipam o inı́cio da transição. O factor de perfor-

mance térmico foi comparado ao tubo liso. A melhor performance das geometrias corrugadas foi para

Re = 850 − 2300 onde foi verificado um crescimento praticamente linear. O tubo com p = 6, e = 0.6

mm foi o melhor para Re = 850, o p = 12, e = 0.5 mm foi o melhor para Re = 2300 e o p = 12, e = 0.6

mm foi o melhor no meio do intervalo. Para Re = 100 − 700 os tubos corrugados demonstram pior

performance que o tubo liso. Para Re = 3000 a performance é similar. Um estudo de otimização multi-

objetivo também é realizado e concluiu-se que para um permutador de calor com a menor potência de

bombagem deve-se usar o tubo com p = 6, e = 0.6 mm a Re = 850 e para máxima performance térmica

o p = 12, e = 0.5 mm a Re = 2300.

Palavras-chave: escoamento interno, altura da corrugação, passo da corrugação, potência

de bombagem, performance térmica, aprimoramento de transferência de calor, tubos corrugados
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Abstract

The internal flow in 9 corrugated tubes with pitch (p = 6, 9, 12 mm) and corrugation height (e = 0.4,0.5,

0.6 mm), regime Re = 100−3000, was studied in this work to optimize the flow and verify the influence of

the corrugation geometry on pressure losses and heat transfer. With water as working fluid and constant

heat flux imposed on the tube wall, 100 kW/m2, a numerical model was developed with the CFD software

STAR-CCM+, where the k − ω SST model was used for turbulence. Numerical results were obtained

and validated with the available empirical data. These demonstrate that corrugation induces a swirl

promoting recirculating flow regions which decrease the critical Reynolds number and anticipate onset

of the transition region. The thermal performance factor was evaluated and compared to the smooth

tube. The best performance for the corrugation geometries was for Re = 850 − 2300 where it was

verified an almost linear growth. The tube with p = 6, e = 0.6 mm was the best for Re = 850, the p = 12,

e = 0.5 mm was the best for Re = 2300 and the p = 12, e = 0.6 mm was the best in between. For

Re = 100 − 700 the corrugated tubes show an under-performance compared to the smooth tube. For

Re = 3000 the performance is similar and doesn’t justify the use of a corrugated geometry. A multi-

objective optimization study is also performed and it was concluded that for a heat exchanger with the

lower pumping power one should use the tube with p = 6, e = 0.6 mm at Re = 850 and for maximum

thermal performance the p = 12, e = 0.5 mm at Re = 2300.

Keywords: internal flow, corrugation height, corrugation pitch, pumping power, thermal perfor-

mance, heat transfer enhancement, corrugated tubes
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Chapter 1

Introduction

This work will mainly focus in numerical studies of the heat transferred in different helical inward corru-

gated tubes with pitch and corrugation height variation. An optimized flow will also be determined from

these studies.

1.1 Motivation

Nowadays there is a great demand of techniques to enhance heat exchanger tubes because they are

widely used in applications such as power generation, air conditioning and food industry, among others

[1, 2].

One can use three different techniques to increase the heat transfer in heat exchangers. First there

is the active method which requires a power source like a vibrated flow or a surface vibration, second

there is the passive method which only depends on a surface modification or extension and finally there

is the compound method which is a mix of the two previous or multiple techniques of each method at the

same time as rough surface with nano-fluid or fluid vibration [3].

These days, in order to get not only a smaller size heat exchanger but also effectiveness, having

low cost thermal transport devices makes it necessary to use all the three techniques. Despite that the

passive ones are still prefered.

1.2 Literature Review

The passive enhanced heat transfer technologies are commonly the first choice for compact heat ex-

changers and there are different types as for example twisted tapes [4], ribs [5], fins [6], extended sur-

faces [7], rough surface [8], additives [9], wire coil insert [10] and corrugations [3]. All these techniques

improve the heat transferred compared with the smooth tube, however in this study the corrugated ge-

ometries will be the main subject of discussion.

The main purpose of using passive techniques is to induce swirl and vortices at the secondary flow

region, which mix the fluid layers with the core flow and increase the wet area [11]. In this case Ka-

1



reem et al. [3] explained that the main goal of the corrugation, as similarly said for general passive

techniques, is to promote the secondary recirculation flow by inducing radial velocity components, mix-

ing the flow layers and finally, increasing the wet perimeter with holding the throat cross-section area

constant, which leads to an increase of the convective surface area. It should be noted that Kareem

et al. [3] paper focused on making a review of all the studies made between 1977 and 2015 about heat

transfer enhancement for different types of corrugations. It shows that analysis have been made for all

the regimes (laminar, transition and turbulent) and in terms of optimization it was concluded that the

heat transfer is always accompanied with pressure drop which has higher values for a turbulent flow. In

general the corrugated tubes have a significant improvement on heat transfer compared with the smooth

tube. It is also said that the corrugation pitch and height have great influence on the flow pattern of the

tested fluid and finally that helically corrugated tubes give further enhancement of heat due to the mixed

effects of curvatures and corrugations.

Numerous numerical simulation and experimental studies have been made in the recent years con-

sidering various parameters such as different corrugation shapes [12, 13], the Reynolds number (Re)

[14–16], the Prandtl number (Pr) [17, 18], the corrugation height [19, 20] and the corrugation pitch [21–

24]. Most of the studies about corrugated tubes focused on the inward concave type [13, 15, 22, 25–29]

because cold rolling the external tube surface is easier and they are more competitive in comparison to

performance and cost of other enhanced techniques. This confirms that the helical corrugated tubes are

the best optimization choice.

A lot of studies also focus on the liquid heat transfer process because of the higher heat transfer

coefficients of denser fluids. The gas-gas heat exchangers usually have a great cost because of the

metal materials and used space due to the low thermal conductivity [30]. Webb et al. [31] also suggested

that the most important variables are pressure drop, heat transfer rate and flow rate in order to obtain

the optimum surface geometry of the flow in the tube.

Thus, taking into account the parameters previously mentioned, helical inward corrugated tubes

(Fig. 1.1) with different pitch and height will be analyzed in terms of heat transfer and pressure drop for

a range of Reynolds number going from laminar to turbulent regime with a final flow optimization study.

Figure 1.1: Example of inward helically corrugated tubes with different pitch used by Laohalertdecha
et al. [32]
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1.3 Objectives

For nine helical inward corrugated tubes with three different pitches and corrugation heights, a numerical

study will be accomplished with the following goals:

• Comparison of the Nu number between the smooth tube and the corrugated tube validating the

results, when possible, with the experimental data available;

• Comparison of the Darcy friction factor f between the smooth tube and the corrugated tube vali-

dating the results, when possible, with the experimental data available;

• Understand what impact the corrugation pitch and height have in the flow transition region;

• Understand how swirls are formed inside the corrugated tubes and how they enhance the heat

transfer;

• Determine of the Nu augmentation factor for the different corrugated tubes compared to the

smooth tube;

• Determine of the f augmentation factor for the different corrugated tubes compared to the smooth

tube;

• Determine of the Thermal Performance of the corrugated tubes compared to the smooth tube;

• Determine and comparison of the Pareto efficiency curves of the nine corrugated tubes and check

which are the optimum working conditions.

1.4 Thesis Outline

This work is divided in five chapters: Introduction, Background, Implementation, Results and Conclu-

sions.

In the Introduction, to which this point also belongs, are presented some methods to improve heat

exchangers and which ones are the most common and used at the industry. It is also referred the object

of study in this thesis and the objectives to be accomplished for the same.

In the Background chapter it will be described the theoretical overview of the internal flow inside

smooth tubes and how it is adapted to the corrugated ones. There will also be presented the governing

equations used in the numerical studies and some experimental correlations that will be used as a

comparison to the outcome results of the simulations.

For the Implementation chapter a discussion will be made about the CAD models used, the numerical

models, how were they solved and finally a verification and validation of those models.

In the Results chapter the objectives outlined in the Introduction will be studied, compared with the

experimental correlations available and discussed.

At last place there are the Conclusions in which will be described the achievements of the results

obtained in this study and some suggestions for future work in this subject.
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Chapter 2

Background

In this chapter, hydrodynamic and thermal considerations are presented for a common circular tube and

after corrugated tubes are introduced. After that the available empirical correlations for helical corrugated

tubes are presented in order to be compared with the equations available for the smooth tube and finally,

the fluid flow and heat transfer model is described from the basic principles of conservation of mass,

momentum and energy.

2.1 Internal Flow

It is easy to verify when there is an internal flow, such as a flow in a pipe, since its fluid is surrounded by

a surface. Thus the boundary layer is incapable to develop without eventually being constrained by the

walls. So it is possible to say that the internal flow configuration is a practical way for cooling and heating

fluids that are used in energy conversion technologies, environmental control and chemical processing

[33].

2.1.1 Hydrodynamic considerations

In an internal flow it is necessary to know about the existence of an entrance region and a fully developed

region. Considering a laminar flow in a tube of radius ro where the incoming fluid has an uniform velocity

profile, the fluid interacts with the surface creating a boundary layer that develops with increasing x until

the end of the hydrodynamic entry length, xfd,h, where it merges (Fig. 2.1). Being a laminar flow the

viscous effects become relevant, and after the merge of the boundary layers, they extend through all the

cross section of the tube resulting in an unchangeable velocity profile with x (fully developed flow).

For the case that the boundary layer is turbulent (Fig. 2.2) the velocity profile exhibit a different

shape. This boundary layer is characterized by inside unsteady swirling flows. The nominal thickness

of the boundary layer is defined as the normal distance from the wall to the point where the velocity

reaches 99% of the free-stream velocity. Above this point the effects of viscous stresses can then be

neglected.
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Figure 2.1: The development of a laminar hydrodynamic boundary layer in a circular tube [33]

Figure 2.2: Velocity profile of a turbulent boundary layer [34]

As shown in Fig. 2.2 the turbulent boundary layer is divided into two main layers which are the outer

layer and the inner layer. The outer layer is dominated by turbulent effects (inertia dominated core flow

far from wall) and it is free from direct viscous effects. In the other hand the inner layer (10 to 20% of

the total thickness of the wall layer) can be split up into three more sublayers which are the viscous

sub-layer, buffer layer and log layer. In the viscous sublayer the fluid layer in contact with the wall is

dominated by viscous effects and is almost laminar (diffusion predominance). The mean flow velocity

only depends on the fluid density, viscosity, distance from the wall and the wall shear stress, presenting

a nearly linear velocity profile. The buffer layer is a transitional layer between the viscous sublayer and

the log layer where diffusion and turbulent mixing are comparable. Finally there is the turbulent log layer

which is dominated by turbulent effects.

Resuming the analysis of Fig. 2.1 it it possible to say that the size of the entry region depends on the

laminar or turbulent regime of the flow which can be determined by the Reynolds number

ReD =
umD

ν
(2.1)

where
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um =
ṁ

ρAc
(2.2)

The ReD represents the ratio between inertial forces and viscous forces, having a higher or lower

number depending if inertial forces or viscous forces are more predominant respectively. Also in equation

2.1, the um refers to the mean fluid velocity over the tube cross section Ac, D is the tube diameter (which

is D = Di for a circular tube) and ν is the kinematic viscosity of the fluid. In equation 2.2, ṁ corresponds

to the mass flow rate.

The critical Reynolds number at what turbulence effects start to be noticed is

ReD,crit ≈ 2300 (2.3)

yet higher Reynolds numbers are needed in order to have fully turbulent conditions (ReD ≈ 10000).

As said by Bergman et al. [33], for a laminar flow (ReD . 2300), the hydrodynamic entry length can

be expressed as (xfd,h
D

)
lam
≈ 0.05ReD (2.4)

assuming that the fluid enters the tube from a rounded converging nozzle and that the velocity profile at

the entrance is practically uniform (Fig. 2.1). And for the turbulent flow, despite not having an optimal

general expression for the entry length, it is known that it is approximately independent of the Reynolds

number and as a first approximation can be represented as

10 .
(xfd,h

D

)
turb

. 60 (2.5)

assuming fully developed turbulent flow at
(
x
D

)
> 10. As said by Cruz [35] and [36], in a more recent

study, one the development of turbulent flow inside a pipe have been made by Doherty et al. [37] and

they proposed that the turbulent fully developed entry length was a little bit longer and expressed as

(xfd,h
D

)
turb

. 80 (2.6)

Figure 2.3: Velocity profile for a laminar flow inside a circular tube [33]
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The velocity profile of the circular tube can be obtained solving the x−momentum equation. There-

fore, for a laminar, incompressible, constant property fluid flow in the fully developed region the profile

becomes
u(r)

um
= 2

[
1−

(
r

ro

)2
]

(2.7)

As it is possible to verify through equation 2.7 and Fig. 2.3 the fully developed velocity profile inside

the tube is parabolic where um can be determined knowing the mass flow rate.

Nowadays, for engineering purposes, it is also important to know the pressure drop for a sustainable

internal flow since this quantity can be used to obtain the fan or pump power requirements. The Darcy

friction factor is a dimensionless parameter that can be written in terms of the pressure drop as

f ≡
−2
(
∂p
∂x

)
D

ρu2
m

(2.8)

and it leads to the Darcy-Weisbach equation which reorganized in order to f yields

f =
2D

ρu2
m

(
∆p

L

)
(2.9)

where ∆p is the pressure drop, ρ is the material density, L the reference length of the tube and ∆p
L is

the pressure loss per unit length. From this, for a fully developed laminar flow the equation 2.8 (Hagen-

Poiseuille equation) becomes

f =
64

ReD
(2.10)

For a fully developed turbulent flow it is difficult to obtain good correlations once not only there

is dependence on the Reynolds number but also on the surface condition (roughness) and therefore

empirical correlations are used.

Considering a smooth tube, Petukhov et al. [38] found the following correlation

f = (0.79 lnReD − 1.64)−2 3000 . ReD . 5 · 106 (2.11)

Many other studies have been made throughout the years about horizontal tubes in order to obtain

friction factor correlations for different flow regimes and Tam et al. [39] made a compilation of the most

important. So from their work, for an isothermal transition fully developed flow Hrycak and Andrushkiw

[40] found the following correlation

f = 4(−3.1× 10−3 + 7.125× 10−6ReD − 9.7× 10−10Re2
D) 2100 < Re < 4500 (2.12)

There is also the Blasius correlation [41] for the turbulent fully developed flow for the smooth tube

which is a simpler way to compute the Darcy friction factor since it has no term for pipe roughness

f = 0.3164Re−0.25
D (2.13)

8



Both equations, 2.12 and 2.13, have a multiplicative factor 4 associated in order to be in accordance

with the friction factor equation 2.10 that comes from the Darcy-Weisbach equation.

Knowing the pressure drop one can finally determine the fan or pumping power necessary to over-

come the resistance to the flow related to this pressure drop. By this definition it is possible to obtain

P = (∆p)V̇ (2.14)

where V̇ = ṁ
ρ and it represents the volumetric flow rate for an incompressible fluid.

2.1.2 Thermal considerations

Now for the same circular tube that was showed in Fig. 2.1, if it is considered that the incoming fluid

has a uniform temperature T (r, 0) being this one less than the surface temperature (Ts > T (r, 0)), by

Fig. 2.4 it is possible to see the development of the thermal boundary layer due to the convection heat

transfer that occurs.

There are two surface conditions that can be imposed in the tube which are the uniform temperature

(Ts is constant) or a uniform heat flux (q′′s is constant). This last one will be considered in this work and

over again mentioned in the implementation chapter. By choosing one or another fixed condition the

thermally fully developed flow can be achieved, however, the shape of the fully developed temperature

profile T (r, x) becomes different.

Figure 2.4: The development of the thermal boundary layer in a heated circular tube [33]

One can also realize that for both surface conditions, the amount by which fluid temperatures exceed

the entrance temperature increases with increasing x.

In this case, for a laminar flow, Bergman et al. [33] says that Kays et al. [42] defined a thermal entry

length as (xfd,t
D

)
lam
≈ 0.05ReDPr (2.15)

where Pr is the Prandtl number which can be defined as the ratio between the momentum diffusivity

9



and thermal diffusivity and can be represented as

Pr =
cpµ

k
(2.16)

where cp is the specific heat, µ the dynamic viscosity and k the thermal conductivity of the fluid.

Comparing the equations 2.4 and 2.15 for laminar conditions, it is possible to observe that if Pr < 1,

the hydrodynamic boundary layer develops slower than the thermal boundary layer (xfd,h > xfd,t), if

Pr > 1 the opposite happens (xfd,h < xfd,t) and for Pr = 1, the boundary layers are approximately

equal in extent. In this work and as it will be discussed in the implementation section, the fluid that is

being used is water, which for 300K has Pr = 5.83 [33]. Thus, the momentum diffusivity is 5.83 times

bigger than the thermal diffusivity and therefore the hydrodynamic boundary layer will developed around

6 times faster than the thermal one.

After all, Cruz [35] stated in his work that studies have been made by Meyer and Everts [43] in smooth

circular tubes with constant heat flux surface condition and they found out that a longer thermal entry

length is needed when the flow is simultaneously hydrodynamically and thermally developing comparing

to when the flow is hydrodynamically fully developed and thermally developing. Therefore, as shown in

equation 2.17 a coefficient of at least 0.12 must be considered compared to the initial 0.05 indicated

above in equation 2.15. (xfd,t
D

)
lam
≈ 0.12ReDPr (2.17)

One can easily realize that the Prandtl number has a great influence on the laminar thermal entry

length (xfd,t grows with Pr) however for a turbulent flow the conditions are almost independent of Pr

and the following approximation can be done [33]

(xfd,t
D

)
turb
≈ 10 (2.18)

It is known that to describe an internal flow, in case there is absence of a free stream velocity (u∞),

a mean velocity is needed. In a similar way, a mean temperature (bulk temperature) is needed if there

is absence of a fixed free stream temperature (T∞). Therefore, in order to obtain the mean temperature

definition, first equation 2.19 must be evaluated

q = ṁcp(To − Ti) (2.19)

where the right side terms represent the thermal energy for an incompressible liquid or the enthalpy

(flow work plus thermal energy) for an ideal gas which is transported by the fluid. Knowing that there is

convection, the mean temperature Tm can be determined through an equation where ṁcpTm is equal

to the rate of thermal energy (or enthalpy) advection integrated over the cross section and may be

presented as

ṁcpTm =

∫
Ac

ρucpT dAc (2.20)

where ρu is the mass flux inside the circular tube and cpT is the thermal energy (or enthalpy) per unit
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mass, being ρ and cp constant fluid properties.

After knowing Tm one can define the Newton’s law of cooling

q′′s = h(Ts − Tm) (2.21)

where h is the local convection heat transfer coefficient and Ts is the surface temperature. It is important

to realize that Tm is as much as a good reference temperature for internal flows as T∞ is for external

flows yet they have a crucial difference. If the flow direction is considered, T∞ remains constant while

Tm vary in this direction. That happens because ∂Tm

∂x 6= 0 when heat transfer occurs. Tm increases

with x if the heat transfer is from the surface to the fluid (Ts > Tm) and decreases with x if the opposite

happens (Ts < Tm).

As previously said, if there is heat transfer neither ∂Tm

∂x or ∂T∂x get to zero for any radius r. That being

said, in order to obtain thermally fully developed conditions one must define an adimentional temperature

difference as (Ts−T )/(Ts−Tm). Despite the change of the temperature profile T (r) with x, the profile’s

shape no longer changes and finally it is possible to state that the flow is thermally fully developed and

its condition can be presented as

∂

∂x

[
Ts(x)− T (r, x)

Ts(x)− Tm(x)

]
fd,t

= 0 (2.22)

where the tube’s surface temperature is Ts, the local fluid temperature is T and the mean temperature

of the fluid over the cross section of the tube is Tm. This condition is achieved with either an uniform

surface temperature or an uniform surface heat flux. From equation 2.22 one can also conclude that

the local convection coefficient is constant and independent of the x direction from the point where the

thermally fully developed conditions are reached (xfd,t) as demonstrated in Fig. 2.5 bellow, which is

defined by equation 2.23 as
h

k
6= f(x) (2.23)

Note that constant fluid properties are considered.

Figure 2.5: Convection heat transfer coefficient variation with x in a circular tube [33]
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Through the same figure one can also notice that equation 2.22 does not satisfy the thermal entrance

region, where h changes with x. That happens because the thermal boundary layer thickness at the tube

entrance is zero and therefore the h is too high at x = 0, beginning to decay as soon as the thermal

boundary layer starts to develop until the point xfd,t from where it stabilizes at said above.

Knowing that the tube in Fig. 2.4 is fully enclosed, parameters as the mean temperature along x

and the total convection heat transfer (qconv) related to the inlet and outlet temperature difference can

be determined through an energy balance. To solve this problem usually some assumptions are made.

For example it is common to neglect the viscous dissipation and consider that the fluid can be modeled

as an incompressible liquid or as an ideal gas with negligible pressure variation. The net heat transfer

by conduction in the axial direction is also reasonable to neglect, hence, equation 2.19 will only depend

on qconv and after rewriting it, for a tube of finite length it yields

qconv = ṁcp(Tm,o − Tm,i) (2.24)

where Tm,o is the mean temperature in the outlet and Tm,i is the mean temperature at the inlet.

As previously mentioned in this work a uniform surface heat flux on the tube will be considered. Being

q′′s independent of the axial direction, the total heat transfer rate can be written as

qconv = q′′s (P · L) (2.25)

where P is the tube’s inner surface perimeter and L the length of the tube.

For this surface condition there is also

dTm
dx

=
q′′sP

ṁcp
6= f(x) (2.26)

which integrated from x = 0 yields

Tm(x) = Tm,i +
q′′sP

ṁcp
x (2.27)

for a constant heat flux.

Through equation 2.27 one can easily verify on Fig. 2.6 that the mean temperature has a linear

variation with x and in the same figure, the variation of (Ts − Tm) from equation 2.21 can also be

analyzed. As h decreases fast in the beginning of the thermal entry length (Fig. 2.5) the temperature

difference starts to rise quickly until a certain point where it begins to stabilize due to h lower variation. As

previously said, when the the point xfd,t is reached, thermally fully developed conditions are achieved,

so h becomes constant and in turn the temperature difference (Ts − Tm) becomes constant as well.

In order to determine the convection coefficient, a balance between radial conduction and axial ad-

vection should be done, which after some rearrangements yields

Tm(x)− Ts(x) = −11

48

q′′sD

k
(2.28)
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Figure 2.6: Axial temperature variations for a circular tube with uniform surface heat flux [33]

which combined with equation 2.21 (Newton’s law of cooling) gives

NuD =
hD

k
= 4.36 (2.29)

The equation 2.29 is a theoretical result for a laminar, incompressible, constant property fluid flow in

fully developed conditions inside a circular tube and uniform surface heat flux. In this equation h is the

convective heat transfer coefficient, D is the tube inner diameter and k is the fluid thermal conductivity.

Together they form the Nusselt number (NuD) which represents the ratio between the heat transferred

by convection and the heat transferred by conduction. It is easy to realize that for these conditions the

NuD is constant and independent of Pr, ReD and axial direction.

In 1976 Gnielinski [44] determined a correlation for a turbulent fully developed flow (thermally and

hydrodynamically) inside a circular tube, also valid for the transition region and which in a simplified form

yields

NuD =
(f/8)(ReD − 1000)Pr

1 + 12.7(f/8)1/2(Pr2/3 − 1)
0.5 . Pr . 2000 , 3000 . ReD . 5 · 106 (2.30)

where the friction factor can be obtained from equation 2.11 or the Moody diagram.

In a more recent work in 2013 [45], a linear interpolation between Nusselt numbers ranging from

Re = 2300 to 4000 was made in order to close the gap that existed at the transition region (Re = 2300)

and the following correlation was presented

Nucorr = Nuexp

(
4, 5

Pr

)0.42(
Prw
Pr

)0.11

1000 < Re < 15000 (2.31)

where the experimental Nusselt numbers determined are normalized by the factor of (4.5/Pr)0.42 and

finally corrected by (Pr/Prw)0.11 for the temperature dependence of the physical properties (fluid Prandtl

Pr and wall Prandtl Prw).

By the end of year 2020 Ammar and Park [46] also made a research to validate the Gnielinski

13



correlation in order to evaluate the heat transfer coefficient of enhanced tubes by a non-linear regression

model. They start by saying that despite equation 2.30 being an accurate correlation for transition and

turbulent flow it has an error of ±20% for 90% of the data that was based on 800 experimental data

points. After some studies the following correlation was proposed

Nunew = 0.3Re0.22

[
(f/8)(Re− 1000)Pr

1 + 12.7(f/8)1/2(Pr2/3 − 1)

(
1 +

(
Di

L

)2/3
)(

Pr

Prw

)0.11
]0.77

Gnielinski

(2.32)

which is valid for Re = 8500 − 12500 for heating fluid conditions. As is it possible to see this correlation

introduces an extra Reynolds number term and the correlation suggest the enhanced tube results well

with an agreement within ±5%, being the total mean error equal to 2.1%. In this equation Di and L are

the inner tube diameter and the tube length respectively.

2.1.3 Corrugated tubes

Despite all the circular tube studies, as above described, non-circular tubes, especially corrugated tubes,

have brought a lot of interest to researchers especially because they involve convection transport and

are being more used in compact heat exchangers. In order to compare circular tubes with the helically

corrugated ones, an effective diameter (characteristic length) should be defined. Therefore, not only

Bergman et al. [33] but also Yang et al. [47], Ajeel et al. [48], Wang et al. [49] among others, define so

this called hydraulic diameter Dh as

Dh =
4Ac
Pwet

(2.33)

where Ac is the flow cross section area and Pwet corresponds to the wet perimeter of the same. For a

circular tube Dh = Di = D.

With this parameter one can redefine the Reynolds number in equation 2.1 as

Re =
umDh

ν
(2.34)

The Darcy-Weisbach equation 2.9 and the Nusselt number equation 2.29 also become respectively

f =
2Dh

ρu2
m

(
∆p

L

)
(2.35)

Nu =
hDh

k
(2.36)

The helically corrugated tube, as shown in figure 2.7 and as already said, is one of the tubes used to

enhance heat transfer. As it is possible to see the main parameters that describe the tube are the pitch

p and the corrugation height e. For constant exterior and interior diameter, De and Di respectively, and

for a certain Re, the pitch and the corrugation height will be the ones to set the flow transition, the heat

being transferred and the friction factor associated.

Based on these parameters, researchers tried to find out correlations that could better describe the
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Figure 2.7: 2D section view of a corrugated tube

flow in different regimes inside helically corrugated tubes.

In 2004 Vicente et al. [17, 50] presented two papers. In both of them the results were obtained for

Re′ = f(Di) and Nu′ = f(Di). In order to the results to be in agreement with the new equations (2.34

and 2.36) outlined for the corrugated tubes, the following conversion can be done, Re′ = (Di/Dh)Re

and Nu′ = (Di/Dh)Nu, so that the correlations proposed can be Re = f(Dh) and Nu = f(Dh).

So the first paper [50] was an experimental investigation about laminar and transition flow at 10

horizontal helically corrugated tubes, where water and ethylene glycol were used as test fluids. From

their work they came out with a laminar flow friction factor correlation that can be expressed as

f = 119.6(Re′)−0,97φ0,11 (2.37)

where the equation was multiplied by 4 in order to agree with the Darcy friction factor. That happens

because Vicente et al. [50] presented their results on Fanning friction factor basis. In this equation φ

represents a dimensionless factor called severity index factor which can be defined as

φ =
e2

pDi
(2.38)

So the severity index factor relates the most important parameters that describe a corrugated tube, as

shown at Fig. 2.7, and at the same time, it establishes how roughness can influence the flow. It is said

that equation 2.37 correlates 95% of the experimental data within 5% and that for a certain φ the friction

factor increased between 5− 25%.

At [50] it was also determined a critical Reynolds number based on the study of 10 corrugated tubes

leading to the following correlation

Re′crit = 2100

[
1 + 1.18 · 107

(
e

Di

)3.8
]−0.1

(2.39)

which has a 15% accuracy on its values.

For the heat transferred, a Nusselt number correlation was also determined. However, in [50], the

flow had a mixed convection heat transfer where the Nusselt number depended not only on the natural
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convection but also on the entry region. In this work, heat transferred by forced convection is predom-

inant, especially because of the small size of the tubes being used (Di = 4.5mm). Therefore, their

solution for laminar Nu′ cannot be considered.

The second paper [17] was also an experimental research about the same 10 horizontal hellically

corrugated tubes with the same test fluids and flow conditions of Re′ = 2000−90000 and Pr = 2.5−100.

The purpose of this work was to obtain the heat transfer and isothermal friction characteristics of the

tubes. From all the tubes tested, 600 points were correlated to experimentally determine the following

generalized friction factor correlation for a turbulent flow

f = 6.12(Re′)−0.16φ0.46 (2.40)

which has a 7% deviation for 95% of the experimental friction data for Re′ = 8000− 60000. Once again,

the obtained friction factor was multiplied by 4 to be in agreement with the Darcy friction factor. For

Re′ = 2000 − 8000 Vicente et al. [17] recommend that equation 2.40 should only be used for tubes of

φ < 10−3 (soft corrugation). For the case that φ > 10−3 (medium-high corrugation) a constant friction

factor evaluated with 2.40 at Re′ = 8000 should be used. By following these recommendations make

estimated error stay within ±10%. It is also said that equation 2.40 can still be used for Re′ > 60000

however the predicted friction factor values will be 16% higher than the experimental ones.

For the heat transfer results, 800 points were also experimentally correlated to obtain the following

generalized Nusselt number correlation for a turbulent flow

Nu′ = 0.3741(Re′ − 1500)0.74φ0.25Pr0.44 (2.41)

which is valid for Re′ > 2000 and correlates 95% of the empirical data within 14% deviation. Vicente et al.

[17] also say that for an increasing Pr the heat transferred by corrugated tubes is higher (compared to

smooth tubes).

There is not much research made in the laminar regime so this part lacks of correlations. One

of the last works published, besides Vicente et al. [50] was by Barba et al. [28] in 2002. It was also

an experimental investigation to determine the pressure drop and heat transfer in the corrugated tube

with constant heat flux for 100 < Re < 800 where the test fluid was ethylene glycol in steady forced

convection. Being that said, after fitting the experimental data, for a periodically fully developed region,

an isothermal friction factor correlation could be found

f = 61.639(Re′)−0.8602 (2.42)

which already agrees with the Darcy friction factor. For the same developed region the Nusselt number

correlation obtained was

Nu′ = 0.7345(Re′)0.6589Pr0.0374 (2.43)

in which the maximum relative difference between the experimental data and the correlations results
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was 5%. By looking at the exponent factors in equation 2.43 it is noticeable that for an increasing

Re the heat transfer enhancement is higher than for an increasing Pr. Both equations 2.42 and 2.43

depend on Re′ = f(Denv) = f(Di). So the same conversion can be done (Re′ = (Di/Dh)Re and

Nu′ = (Di/Dh)Nu) as used for Vicente correlations. However, correlation 2.43 only stands for the

corrugated tube analyzed in Barba’s experiment (Fig. 2.8) which is a little bit different from the ones

considered in this work (Fig. 1.1). Therefore, and as already said, as laminar regime lacks of empirical

correlations for the helical corrugated tubes, the equations 2.42 and 2.43 should only be used as a first

order approximation. Note that using this correlations for the helical corrugated tubes can compromise

the precision of the estimated results.

Figure 2.8: Front view (upper tube) and side view (lower tube) of Barbas’s corrugated tube [28]

Later, in 2011, Pethkool et al. [51] made an experimental investigation for nine tubes (3 different

corrugation heights and pitches) to evaluate the thermal performance, heat transfer enhancement and

friction factor for a turbulent flow, employing water as a test fluid. The following empirical correlations

were obtained

f = 1.15Re−0.239

(
e

Dh

)0.179(
p

Dh

)0.164

5500 < Re < 60000 (2.44)

Nu = 1.579Re0.639Pr0.3

(
e

Dh

)0.46(
p

Dh

)0.35

5500 < Re < 60000 (2.45)

from which they came to a conclusion that the ratio (e/Dh) is an important factor that dominates the

magnitude of the Nusselt number while the (p/Dh) ratio it is only dominant for the friction factor. In

general, one should notice that the (e/Dh) ratio has a higher effect than the (p/Dh) ratio. Finally, the

validation of these correlations demonstrated that the average deviations of the multiple regressions of

the friction factor and the Nusselt number are within ±4% and ±9% respectively.

2.2 Governing equations of fluid flow and heat transfer

As said by Versteeg and Malalasekera [52] the governing equations of fluid flow constitute the mathe-

matical statements of the conservation laws of physics which claim that the mass of a fluid is conserved,
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the rate of change of momentum equals the sum of the forces on a fluid particle (Newton’s second law)

and that the rate of change of energy is equal to the sum of the rate of heat.

The fluid can be approximated as a continuum if it is assumed that the density of the fluid is high

enough considering that an infinitesimally small element (in the sense of differential calculus), Fig. 2.9,

of the fluid contains a sufficient number of particles, for which we can specify mean velocity and mean

kinetic energy. Thus it is possible to define velocity, pressure, temperature, density, and other important

quantities at each point of the fluid [53].

Figure 2.9: Infinitesimal fluid element [52]

2.2.1 Continuity equation

In order to obtain the mass conservation equation one must consider the mass balance for the fluid

element which implies that the rate of increase of mass in the fluid element is equal to the net rate of

flow of mass into the fluid element. From this balance it is possible to obtain the following expression in

a compact vector notation
∂ρ

∂t
+ div(ρu) = 0 (2.46)

which in a longhand notation yields

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (2.47)

The equation 2.46 is used for unsteady, three dimensional and compressible fluid flows being the left

hand side the rate of change in time of the density (mass per unit volume) and the second term the net

flow of mass out of the element across its boundaries (convective term). However in this work, and as it

will be described in the Implementation chapter, it is assumed an incompressible flow. This means that

the density is constant and the equation 2.46 becomes

div(u) = 0 (2.48)
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and in a longhand notation
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.49)

2.2.2 Momentum equations

For the momentum equations it is necessary to recall the Newton’s second law which states that the

rate of increase of momentum of a fluid particle is equal to the sum of forces on that fluid particle. That

being said, it is possible to obtain the following momentum equations for a compressible flow for the

three reference directions (x,y,z) in a compact vector notation

∂(ρu)

∂t
+ div(ρuu) = −∂p

∂x
+ div(µ∇u) + SMx (2.50)

∂(ρv)

∂t
+ div(ρvu) = −∂p

∂y
+ div(µ∇v) + SMy (2.51)

∂(ρw)

∂t
+ div(ρwu) = −∂p

∂z
+ div(µ∇w) + SMz (2.52)

These equations are commonly called as the Navier-Stokes equations and they can be adapted

in different ways. In this case, as previously said, it was considered an incompressible flow and it is

assumed a Newtonian fluid, in which the viscous stresses are proportional to the rates of deformation.

Therefore the viscosity is constant and the equations become

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(2.53)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(2.54)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz −

∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(2.55)

where the rate of increase of x-, y- and z- momentum per unit volume of fluid particle is given by the

terms on the left side. On the right side the first term represents the gravitational forces, the second term

represents the pressure forces and at last the viscous forces. The contributions of these three surface

forces are usually separated terms in the momentum equation and if there are any effects from body

forces (centrifugal force, Coriolis force and electromagnetic force) they should be presented as source

terms (SMx, SMy and SMz) [52].

2.2.3 Energy equation

The energy equation can be obtained from the first law of thermodynamics which claims that the rate of

increase of energy of a fluid particle is equal to the sum of the net rate of heat added to the fluid particle

and the net rate of work done on the same. Versteeg and Malalasekera [52] also say that the energy of
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a fluid is commonly defined as the sum of internal (thermal) energy i, kinetic energy 1
2 (u2 + v2 +w2) and

gravitational potential energy. This definition points that the fluid element stores gravitational potential

energy and in this case, its effects will be included as a source term, giving the following energy equation

ρ
DE

Dt
= −div(pu) +

[
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z

]
+ div(k∇T ) + SE (2.56)

where there is E = i + 1
2 (u2 + v2 + w2). The left side term represents rate of increase of energy of a

fluid particle per unit volume, the first two terms of the right side represent the total rate of work done

on the fluid particle by surface stresses, the third term represents the rate of heat addition to the fluid

particle due to heat conduction across element boundaries and the last one is the energy source term.

Despite equation 2.56 being an adequate energy equation it is preferable to extract the changes of the

(mechanical) kinetic energy in order to get an equation for the internal energy i or temperature T . Thus,

by rearrangement it is possible to obtain the following internal energy equation by the Newtonian model

∂(ρi)

∂t
+ div(ρiu) = −p div(u) + div(k∇T ) + Φ + Si (2.57)

where the effects due to viscous stresses are described by the dissipation function

Φ = µ

(
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2
)

+ λ(div u)2 (2.58)

For this case, as it is considered an incompressible fluid i = cT , where c is the specific heat and

div u = 0.
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Chapter 3

Implementation

In this section, at first, it will be described how the geometries to be analyzed were obtained and after

the numerical model will be discussed in terms of the different assumptions made and the physics used

to do the analysis. In the end, the verification and validation process will be introduced.

3.1 3D CAD geometry

In order to do a numerical simulation, first, one must define the simulation domain. So using the 3D CAD

(Computer-Aided Design) modeling software available by STAR-CCM+ [34] it was possible to create 9

geometries for the corrugated tubes and one for the smooth tube for comparison. As shown at Fig. 3.1

only the flow region inside the tubes was considered for the domain. As De = 5 mm and Di = 4.5 mm

were the outer and the inner diameter used for the tubes in this study (the same diameters as Cruz

[35] used) the wall thickness of the tubes was neglected. This will be better discussed at the numerical

model chapter after enumerating all the numerical assumptions made.

Figure 3.1: Isometric view of the corrugated tube with p = 6 mm and e = 0.6 mm
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The tubes could be created by another modeling software however to avoid import errors all of them

were made in the same software that will run the simulations.

As it was mentioned in the topic overview, the corrugated tubes are manufactured by cold rolling the

surface of the circular tube and because of that, as it may be seen in Kareem et al. [3] review paper on

the corrugations, the focus is most of the times placed only in the mid section (Fig. 2.7). However, when

the geometry is created in a modeling software it must have a different approach. In this case, in order

to create the corrugated tubes, the cross section was drawn at first (Fig. 3.2). After that the section was

revolved 360 degrees with a sweep command through a guiding line that has the length of the pitch. As

the tubes geometry repeats itself every pitch (periodic conditions), the length of the tube is always the

same size of the pitch considered. The pitches considered in this study (6 mm, 9 mm and 12 mm) can

be changed by changing the guide line length .

Figure 3.2: Corrugated tubes cross section and design of the corrugation height

Now considering the corrugation heights used in the tubes (0.4 mm, 0.5 mm and 0.6 mm) one can

easily change their value by changing the middle point’s height of the spline used to build the cross

section. In Fig. 3.2 above it is possible to observe at the same time the three corrugation height

configurations obtained by changing the middle point of the spline having all the other points a fixed

constraint. Note that for modeling purposes the cross section is way more important than the mid section

because the cross section and the guide line are the ones that in the end will define the corrugation. It

is difficult to define a suitable spline for the corrugation once just by changing its top side points, despite

having the same corrugation height, the corrugation will have a different form, which will affect the final

results. So knowing this, the corrugations used in this study were created to be similar to the ones used
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by Cruz [35] in order to compare results.

After completing the CAD models, table 3.1 was made to summarize the most important properties

of the tubes that will be analyzed. Note that for numerical purposes only one smooth tube was created

(6 mm long).

Table 3.1: Corrugated tubes and smooth tube properties
p · 103(m) e · 103(m) Aw/l · 106(m) Vw/l · 109(m2) Dh · 103(m) Pw · 103(m) Ac · 106(m) p/Dh e/Dh φ

tube 1 6 0.4 1.4518E-2 1.5259E-5 4.369 13.971 15.259 1.3734 0.0916 0.0059
tube 2 6 0.5 1.4771E-2 1.5150E-5 4.329 13.998 15.150 1.3859 0.1155 0.0093
tube 3 6 0.6 1.5053E-2 1.5043E-5 4.283 14.050 15.043 1.4010 0.1401 0.0133

tube 4 9 0.4 1.4232E-2 1.5259E-5 4.369 13.971 15.259 2.0601 0.0916 0.0040
tube 5 9 0.5 1.4374E-2 1.5150E-5 4.329 13.998 15.150 2.0789 0.1155 0.0062
tube 6 9 0.6 1.4547E-2 1.5043E-5 4.283 14.050 15.043 2.1015 0.1401 0.0089

tube 7 12 0.4 1.4122E-2 1.5259E-5 4.369 13.971 15.259 2.7468 0.0916 0.0030
tube 8 12 0.5 1.4218E-2 1.5150E-5 4.329 13.998 15.150 2.7719 0.1155 0.0046
tube 9 12 0.6 1.4344E-2 1.5043E-5 4.283 14.050 15.043 2.8020 0.1401 0.0067

smooth tube - - 1.4138E-2 1.5904E-5 4.5 14.137 15.904 - - -

As it is possible to see the first two columns show the pitches and corrugation heights used. Cruz

[35] did numerical and experimental studies with helical inward corrugated tubes with the same pitch

variation and from his work he concluded that the pitch had not major influence on the flow transition

and that the corrugation height is way more important in this aspect. So that is one of the reasons why

this parameter will also be studied in here, because it it important to verify how the transition varies.

In the third and fourth column of table 3.1 there is the wet area and the wet volume respectively per

unit length. As already known, being the corrugation a passive enhanced heat transfer method, the wet

areas of the corrugated tubes (for the same pitch) are always greater than the one of the smooth tube.

However there is an exception for the tube 7 where the wet area is slightly lower than the smooth tube

which happens due to low inward corrugation (0.4 mm). This only means that the corrugation height

should have a greater value yet, tube 7 will still be analyzed this way so it can be compared to the other

tubes in order to verify if this case is really worth it in terms of heat transfer enhancement.

Now for the wet volume per unit length, it is clear that as the corrugation is placed inward there is

less wet volume on the corrugated tubes compared to the smooth tube.

To be more clear another table, where it is possible to observe the corrugated tube to smooth tube

volume ratio, was created (table 3.2). So being the smooth tube’s wet volume the maximum volume that

one tube can have, as higher the corrugation the less is the ratio for the corrugated tubes. This ratio

values only depend on the corrugation height and for the corrugation heights of 0.4 mm, 0.5 mm and 0.6

mm the tubes have less 4.06%, 4.74% and 5.42% in wet volume respectively.

In the sixth and seventh columns of table 3.1 there are the wet perimeter and the cross section area

respectively. Both of them only depend on the corrugation height as well and they are always lower than

the the smooth tube’s perimeter and cross section.

Finally, in the fifth and the three last columns there are the hydraulic diameter (determined with 2.33),

the p/Dh and e/Dh adimensional ratios and the severity index (determined with 2.38) respectively, which

can be replaced in the empirical correlations 2.37, 2.40, 2.41, 2.44 and 2.45 to obtain the different friction
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Table 3.2: Corrugated tube to smooth tube wet volume ratio

p · 103(m) e · 103(m) Vw,c/Vw,s

tube 1 6 0.4 0.9594
tube 2 6 0.5 0.9526
tube 3 6 0.6 0.9458

tube 4 9 0.4 0.9594
tube 5 9 0.5 0.9526
tube 6 9 0.6 0.9458

tube 7 12 0.4 0.9594
tube 8 12 0.5 0.9526
tube 9 12 0.6 0.9458

smooth tube - - 1

factors and Nusselt numbers for different flow regimes in order to validate the numerical results.

Note that Aw, Vw, Pw and Ac values were are obtained from the CAD models designed on the

StarCCM+ software [34].

3.2 Numerical Model

As already mentioned, the software STAR-CCM+ will be the one used to do the numerical simulations

[34]. One of the main reasons that it was chosen it’s because it is a software capable of solving fluid

flow and heat transfer problems at the same time. It is also very versatile since its solution includes the

geometry, the mesh, the boundary conditions, the physics models and the simulation results all in one

environment.

3.2.1 Boundary conditions

So at first place, the CAD geometries that were made were split by patch in order to identify the inlet, the

outlet and the wall surface of the domain. With these it was possible to define the boundary conditions.

This being said, the inlet surface was defined as an inlet velocity boundary condition, the outlet surface

was defined with a pressure outlet boundary condition and finally the wet surface (wall surface) was left

with the default wall boundary condition (with no-slip condition) which are the conditions normally used

for an incompressible fluid flow. Usually the helical corrugated tubes are long so only a periodic section

was considered for the research. Therefore the inlet and the outlet boundary conditions were defined as

an interface which means that the solution quantities transfer between the two regions of the simulation.

The periodic length of the tubes corresponds to the pitch used in each one, as it is possible to see in

table 3.1.

Note that in order to determine the Nusselt number a constant heat flux must be imposed on the wall.

This is not necessary for the friction factor once it will be determined for isothermal conditions.
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3.2.2 Mesh models

The second task is to define the mesh. The polyhedral mesher, the prism layer mesher and the surface

remesher were the models used. Since the corrugated tubes have part of the shape of a smooth tube the

generalized cylinder meshing model was also supposed to be chosen. However, since the corrugation

heights used in the tubes are too prominent this model did not work as expected and was rejected,

especially because every mesh created with this model was an irregular mesh.

So for the polyhedral meshing model it is known that it uses an arbitrary polyhedral cell shape to

build the core of the mesh Fig. 3.3.

(a) Cross section mesh view (b) Mid section mesh view

Figure 3.3: Representation of a coarse polyhedral and prism layer mesh with surface remesher in the
helical corrugated tube with p = 6 mm and e = 0, 6 mm

It could be used with the generalized cylinder mesher to generate extruded orthogonal cells along

the length of the cylindrical section of the tube, however as explained, it was not possible but it is

recommended with cylindrical geometries. As it is possible to see in the figure, a volumetric control was

also created to reduce the number of cells in middle once the most important region for analysis is the

region near to the wall.

As the polyhedral mesher is used with a periodic interface, the mesher produce a conformal mesh

for the periodic boundary pair.

The prism layer mesher is used to generate orthogonal prismatic cells next to the boundaries or wall

surfaces creating a layer of cells essential to improve the accuracy of the flow solution. It is defined in

terms of its thickness and the number of cell layers within it as it may be seen in Fig. 3.3.

Finally, there is the surface remesher which in order to improve the overall quality of the existing

surface and optimize it for the volume mesh models, it retriangulates the surface of the geometry. After

this, the resulting mesh can be seen in Fig. 3.4.

Note that in the interface the prism layer mesh has an irregular representation however in the interior

of the tube it was generated as expected. This irregularities does not compromise the final results. One

should also know that a coarse mesh was represented since the different types of mesh are more clearly
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Figure 3.4: Isometric mesh view of the helical corrugated tube with p = 6 mm and e = 0.6 mm

identified. Also note that the number of cells used will be described at section 3.3 on Table 3.3.

3.2.3 Physics models

Assumptions

After defining the mesh, the physics models must be chosen to initiate the numerical simulations. How-

ever, as the real case studies sometimes are too complex to define, some assumptions are made in

order to simplify the numerical studies. Therefore, the following assumptions are presented for this

study:

• Water as working fluid;

• Constant water properties evaluated at 300K;

• Mean bulk inflow temperature of 300K;

• Incompressible flow;

• Newtonian fluid (constant viscosity);

• Hydrodynamically and thermically fully developed flow;

• Constant wall heat flux of 100 kW/m2;

• Negligible water vaporization;

• Negligible gravitacional forces ;
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• Negligible heat transferred by conduction and radiation.

A lot of studies focus on the liquid heat transfer process because of the higher heat transfer coeffi-

cients of denser fluids [17, 50]. Being the water a safer fluid, with an easy access and management,

it is the most common choice for experiments. Water was chosen as a working fluid not only for these

reasons but also because it was the same fluid used by Cruz [35], among other assumptions here enu-

merated. This was done in order to better compare the final results. Being that said, it is also assumed

the water to have constant properties evaluated at 300K with the same mean bulk inflow temperature.

As said by Cruz [35], these are valid assumptions for numerical analysis if the temperature differences

are low (δT < 10K), which is verified in his and this work.

As already told in the governing equations section, it was also considered a Newtonian fluid in which

is known that viscous stresses are proportional to the rates of deformation and therefore the viscosity is

considered constant [52]. The flow was also considered to be hydrodinamically and thermally developed

so it could be modeled as a periodic region with periodic boundary conditions . It was considered a

constant heat flux boundary condition with q′′ = 100kW/m2 in order to have some reasonable water

temperature variation from the inlet to the outlet of the tube. At the same time water vaporization is

neglected so the fluid flow can always be in liquid state (one phase).

As the wall thickness of the tube is really low, as it is described in the 3D CAD geometry, and as

said by Bergman et al. [33] the net heat transfer by conduction in the axial direction can be neglected

as it has a small contribution compared to the heat transferred by forced convection. The same applies

to the heat transferred by radiation (neglected) once an estimation made by Cruz [35] shows that its

contribution is two orders of magnitude lower compared to the two previous. As for the gravitational

forces, they can also be neglected once Andrade [54] work shows that the heat transferred by forced

convection is predominant.

Laminar regime

With these assumptions the numerical physics models can now be chosen. So for the laminar regime

the following models were used:

• Three dimensional

• Liquid;

• Segregated flow;

• Constant density;

• Gradients;

• Laminar;

• Steady/Implicit unsteady;

• Segregated fluid temperature or isothermal;
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• Solution interpolation;

When choosing the models, first, the continuum space must be defined. So the three dimensional

model was chosen since corrugated tubes does not have any symmetry plans in order to make 1D or 2D

analysis and mainly because the three cylindrical components (r, θ, z) are important for the secondary

flow analysis. Then, since water is the working fluid, a liquid material was chosen. Its properties were

changed for the ones given by Bergman et al. [33] evaluated at 300K. With it, one should then define

the pretended type of flow, being in this case the segregated flow the one used. This model solves

each of the momentum equations (2.53, 2.54 and 2.55) in turn, one for each dimension. The connection

between the momentum and continuity (2.49) equations is achieved with a predictor-corrector approach

[34]. The segregated fluid flow is based on constant density fluid flow which was one of the assumptions

made and the model chosen for the equation of state (constant density). That is the main reason why

the segregated flow model was selected. With this one the gradient model is automatically selected as

well.

The viscous regime model for this case is laminar and the time model selection (steady or implicit

unsteady) depends on the convergence state and the Reynolds number used for the analysis.

Additional physics models as segregated fluid temperature or isothermal and the solution interpola-

tion were also used. The segregated fluid temperature model will solve the total energy equation (2.57)

with temperature as the solved variable [34]. It allows to define the bulk inflow temperature which was set

to 300K. This option was always selected every time a Nusselt number needed to be found. In order to

determine the pressure drop along the tube and finally the friction factor associated, isothermal analysis

were made. For this case the segregated fluid isothermal model was always selected. This model keeps

the continuum temperature constant with 300K (set value). This option is suitable for problems where

the temperature variations are small and negligible. It would be computationally expensive to solve an

ordinary energy transport equation when it would only yield a nearly constant field of temperature [34].

In the other hand the solution interpolation model allow to select the interpolation method that is used

to map the solution data when remeshing occurs. The nearest neighbor was the one used by default.

It maps the solution data from one mesh to another by comparing the cell centroids in each mesh. It

means that the new cell gets the solution data from an old cell whose cell centroid is closest to its own.

Note that despite being quick it does not provide the smoothest interpolation results [34].

Turbulent regime

For the turbulent regime the following models were used:

• Three dimensional;

• Liquid;

• Segregated flow;

• Gradients;
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• Constant density;

• Implicit unsteady;

• Turbulent;

• Reynolds-Averaged Navier-Stokes;

• All y+ wall treatment;

• k − ω turbulence;

• SST (Menter) k − ω;

• Wall distance;

• Segregated fluid temperature or isothermal;

• Solution interpolation;

So the first steps for the turbulent regime are the same as for the laminar regime. First the space

is defined as three dimensional, then a liquid material is chosen and the flow is defined as segregated

flow (with the gradients model auto selected). After that the constant density model is chosen for the

equation of state and the time selection was implicit unsteady once for steady state the simulations do

not converge.

As the turbulent regime will be studied in this case, the viscous regime is set to turbulent and by

choosing this model the Reynolds-Averaged Navier-Stokes (RANS) model is automatically associated.

This last one provides closure relations for the RANS equations that govern the transport of the mean

flow quantities [34]. These equations can be obtained by decomposing each solution variable ϕ in

the instantaneous Navier-Stokes equations into their mean value ϕ and their fluctuating component ϕ′

resulting in

ϕ = ϕ+ ϕ′ (3.1)

where the velocity components, pressure, energy or species concentration are represented by ϕ.

Whit this, for the Reynolds averaged turbulence, the k − w turbulence model was chosen. This is

a two-equation model that solves transport equations for the turbulent kinetic energy k and the specific

dissipation rate ω (the dissipation rate per unit turbulent kinetic energy ω ∝ ε/k) in order to determine

the turbulent eddy viscosity [34].

A study developed by Wilcox et al. [55] state that the k − ω model has a better performance (com-

pared with the k − ε model) for boundary layers under adverse pressure gradients. However the most

significant advantage is that it may be applied for all the boundary layer including the viscous-dominated

region, without further modification. Nevertheless, one should note that the k − ω model has one big

disadvantage. In its original form, the boundary layer computations are sensitive to the values of ω in

the free-stream which translates into extreme sensitivity to inlet boundary conditions for internal flows (a

problem that the k − ε model does not have).
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This sensitivity problem was solved by Menter [56] who recognized that the transport equation from

the standard k − ε model could be transformed into a ω transport equation by variable substitution [34].

The transformed equation is similar to the one in the standard k − ω model but has an additional non-

conservative cross-diffusion term containing the dot product ∇k · ∇ω. This inclusion potentially makes

the k − ω model give identical results to the kε model. Menter [56] suggested using a blending function

(which includes functions of wall distance) that would include the cross-diffusion term far from walls, but

not near the wall. By this approach the k − ε model is effectively blended in the far-field with the k − ω

model near the wall making the flow simulations practical. Menter also made a modification to the linear

constitutive equation and named the model containing this modification as SST (shear-stress transport)

k − ω model. This model was also automatically chosen by STAR-CCM+ [34].

At the same time it was also automatically chosen the all y+ wall treatment. It is known that the

walls are a source of vorticity therefore it is essential an accurate prediction of the flow across the

wall boundary layer. For high Reynolds numbers the streamwise velocity is characterized by unsteady

swirling flows inside the boundary layer [34]. For RANS turbulence models the wall treatment provides

boundary conditions to the solvers for flow and energy that are specific to turbulent boundary layers. In

addition, it imposes special values for turbulence quantities on the centroids of the near-wall cells. Note

that not all wall treatments are available with every RANS model or model variant. For example, high

Reynolds number models do not contain the ability to attenuate the turbulence in the viscosity-affected

regions and therefore they only include a high-y+ wall treatment (y+ > 30). The low Reynolds number

models only work with a low-y+ wall treatment (y+ ∼ 1) and an all-y+ wall treatment (used in this case).

Finally, the two-layer all-y+ wall treatment is only available with the two-layer k − ε and the two-layer

Reynolds Stress turbulence models [34]. The all-y+ wall treatment uses blended wall functions that

recreat the low-y+ wall treatment for fine meshes and the high-y+ wall treatment for coarse meshes.

It also produces reasonable answers for meshes of intermediate resolution (when the wall-cell centroid

falls within the buffer region of the boundary layer). Thus, this wall treatment is suitable for a wide range

of near-wall mesh densities.

Another automatic selected model was the wall distance which is a parameter that represents the

distance from a cell centroid to the nearest wall face with a non-slip boundary condition. Note that

many physical models require this parameter to account for near-wall effects. In order do determine

the wall distance the implicit tree method was used by default. This method makes an exact projection

calculation in real space, which is based on a triangulation of the surface mesh.

One should note that all the models used for the turbulent regime were used with the default param-

eter values.

Transition regime

The transition region is also relevant for this work and some tests were performed with the γRe − θ

(Gama-Re-Theta) transition model. As said by [34] this is a two-equation correlation-based transition

model that is capable to provide a semi-local approach to predict the onset of transition in a turbu-

lent boundary layer. It is known that the majority of the transition models are based on the concept of
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intermittency which is a measure of the amount of time during which the flow is turbulent. Thus, an

intermittency value of 1 represents a fully turbulent flow (100% of the time) and an intermittency of 0

corresponds to a fully laminar flow. It is also said that this model was specially formulated for unstruc-

tured CFD codes. As previously mentioned the Gamma-Re-Theta model is based on 2 equations where

the first one is an intermittency transport equation. This one is used in such a way that the source

terms attempt to mimic the behavior of the algebraic engineering correlations. It is also important to

note that the evaluation of momentum thickness Reynolds number is avoided by relating this quantity

to a vorticity-based Reynolds number. Finally, for the second equation, a correlation for transition onset

momentum thickness Reynolds number is defined in the free-stream which is transported (by solving a

separate transport equation) into the boundary layer.

This transition model is incomplete since two critical correlations were proprietary and therefore

omitted. A reason for such an omission is that the model provides a framework for users to implement

their own correlations, which for the case of STAR-CCM+ is done in such a way that allows the custom

specification of correlations using field functions (wall distance in this case). One must recognize that

the process of calibrating the needed correlations is very complex and time-consuming and therefore

the generic correlations provided within the model were used by default.

(a) Velocity profile (mesh 5 from Table 3.3) (b) Temperature profile (mesh 5 from Table 3.3)

Figure 3.5: Velocity and temperature profiles for Re = 1000, p = 6 mm and e = 0.6 mm with an imposed
constant heat flux on the walls of q̇ = 100 kW/m2 and transition model γRe− θ

As initially mentioned, tests were performed with this model and its default values, however the results

obtained were erroneous as it is possible to see in Fig. 3.5. The most refined mesh (mesh 5 from section

3.3 and Table 3.3) was here used once they are the most accurate results as per grid convergence study

(Fig. 3.7 and 3.8) that will be analyzed at section 3.3.To better understand the plots one should know

that a line probe that pass through the centroid of the corrugated tube (in the z coordinate direction) was

defined in order to obtain the axial (i) velocity and temperature profiles of that region. In one hand the

velocity and temperature profiles for the tested corrugated tube (with the most refined mesh) were not
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characteristic, namely similar to the fully developed smooth tube profiles (Fig. 2.1 and 2.4). There are

also strong gradients near the corrugation lower point (≈ −1.6 · 10−3 m) and the secondary flow region

near the tube wall ( ≈ 1.8 · 10−3 m) is indistinguishable. At Fig. 3.6 bellow it is possible to observe,

through the velocity field in the mid section, that the flow does not seem fully developed, despite having

a converged solution.

(a) Velocity Magnitude (b) Turbulent Kinetic Energy

Figure 3.6: Velocity magnitude in the mid section and TKE for Re = 1000, p = 6 mm and e = 0.6 mm
with an imposed constant heat flux on the walls of q̇ = 100 kW/m2 and transition model γRe− θ

The fluctuations of the flow motion were also analysed using turbulence kinetic energy (TKE), which

is dependent on the velocity and can be defined as the measure of the turbulence intensity present in

the flow. As one can see in the TKE field of Fig. 3.6, the peak is too close to the downstream of the

corrugation. As demonstrated in Wang et al. [30], Córcoles-Tendero et al. [57], Córcoles et al. [58] work,

this would only be acceptable for high turbulent Reynolds numbers (Re > 10000) and for a bigger pitch

(p > 10 mm). One should note that it is considered a constant corrugation height of e = 0.6 mm, being

equal to the corrugation height presented at [58] and similar to the other two papers ([30, 57]). As this

case study has Re = 1000 and a pitch of p = 6 mm, this is not possible to happen and the TKE peak

should be further away (near to the upstream of the next corrugation as it will be shown in the Results

chapter).

So with these problems plus the fact that the used transition model is incomplete, prevented the

same from being used. Thus it was considered that the transition occurs instantaneously, being only

chosen for the different Reynolds numbers a laminar or a turbulent model. It is worth noting that the

critical transition Reynolds number for the different corrugated tubes was determined through equation

2.39 in order to choose the flow regime.

3.3 Verification and Validation

As said by Versteeg and Malalasekera [52] one should recognize that errors and uncertainty are in-

evitable aspects of CFD modelling so it becomes essential to develop rigorous methods to quantify the
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level of confidence in its results. Whit this, two main concepts appear. In one hand there is the numer-

ical verification which can be defined as the process of determining whether the model implementation

accurately represents the developer’s conceptual description of the model and the solution to the model.

On the other hand there is the numerical validation that can be defined as the process of determining

the degree to which a model is an accurate representation of the real world from the perspective of the

intended uses of the model. With validation it is possible to quantify the uncertainty. These two con-

cepts, that had their origin from AIAA (American Institute of Aeronautics and Astronautics), Oberkampf

and Trucano, are nowadays broadly accepted.

Verification

For the numerical verification a grid independence study was made. The analysis were performed for

the worst case scenario, which means, for the tube of lowest pitch and highest corrugation (p = 6 mm

and e = 0.6 mm). The test was made for two Reynolds numbers (Re = 100 in laminar regime and

Re = 1000 in turbulent regime) and for five different meshes.

Table 3.3: Number of cells per mesh

Base Size (m) Number of prism layers Cells

Mesh 1 2 · 10−4 4 51782
Mesh 2 1 · 10−4 5 334606
Mesh 3 8 · 10−5 6 627609
Mesh 4 6 · 10−5 7 1465398
Mesh 5 4 · 10−5 8 2933918

As it is possible to see in table 3.3 the main parameters that were changed during the refinement of

the mesh (Fig. 3.3 and 3.4) were the base size and the number of prism layers. The center cells were

also changed based on the percentage of the base size mesh and the prism layer thickness was defined

with 1.5 · 10−4 m and kept constant throughout the refinement process.

Table 3.4: Water properties at 300K [33]
T (K) vf · 103(m3/kg) ρ(m3/kg) cp,f (kJ/(kg ·K)) µf · 106(N · s/m2) kf · 103(W/(m ·K)) Prf νf · 109(m2/s)

300 1.003 997 4.179 855 613 5.83 857.565

At table 3.4 above, there are shown the water parameters that were defined for the grid independence

analysis and for all the simulations done in this work.

As already mentioned in the Numerical model chapter (discussion about the transition region) a line

probe that passes through the centroid of the tube (in the z coordinate direction) was defined in order to

obtain the axial (i) velocity profile of that region. Therefore, for the laminar regime (Re = 100) and for

the turbulent regime (Re = 1000) an isothermal velocity profile was obtained (Fig. 3.7). One should note

that each solution was only accepted when the residuals of the simulations were at least in the order of

10−5 [52]. It was also certified that the the near-wall grid had y+ < 1, because of the no-slip condition

used at the walls.
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(a) Re = 100 (b) Re = 1000

Figure 3.7: Isothermal grid independence study for the corrugated tube with p = 6 mm and e = 0.6 mm

Through analysis it was concluded that the mean relative error of the velocity between the line probe

points at mesh 4 and 5 was 1.21% and 1.13%, for Re = 100 and Re = 1000 respectively. For Re = 100

one can also notice a slight velocity augmentation near to the lowest corrugation point (≈ −1.6 · 10−3 m)

compared to the nearest point to the tube wall ( ≈ 1.6 · 10−3 m). It is clear that viscous effects are

predominant in the laminar regime (lower maximum velocity and lower velocities near to the wall) and

therefore the velocity profile becomes more tapered. In the other hand, for Re = 1000 turbulent diffusion

becomes predominant and there is higher velocity near to the wall and corrugation, being the maximum

velocity in this regime ≈ 8.62 higher than for the laminar case.

As already known, the analysis that are going to be performed for the different corrugated tubes

will have an imposed constant heat flux on the walls of q̇ = 100 kW/m2. As for isothermal conditions

there is only an hydrodynamic boundary layer and for an imposed heat flux a thermal boundary layer

is also formed, it is important to verify if there is any influence of this last one on the velocity profile.

Thus, another study was made (Fig. 3.8) for Re = 1000 in order to obtain the temperature profile of the

corrugated tube and the velocity profile (to be compared with the isothermal one). So it was obtained a

mean relative error of the velocity and temperature (between mesh 4 and 5 ) equal to 1.12% and 0.09%

respectively. In the temperature profile plot it is easy to spot the secondary flow region originated by the

presence of the corrugation (≈ 1.7 · 10−3 to 2 · 10−3 m). This phenomenon will be better described in the

Results chapter.

Finally, as the maximum absolute error between the thermal and isothermal velocity for mesh 4 and

5 was 1.4 ·10−4 and 2.06 ·10−4 respectively, it was concluded that the imposed heat flux had no influence

on the velocity profile of the tubes. As the relative error between mesh 4 and 5 was around 1%, mesh

4 parameters were the ones selected to be used in all the numerical simulations for the 9 different

corrugated tubes in order to have not only accurate results but also reduce the numerical analysis time.
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(a) Velocity profile (b) Temperature profile

Figure 3.8: Grid independence study for Re = 1000, p = 6 mm and e = 0.6 mm with an imposed
constant heat flux on the walls of q̇ = 100 kW/m2

One should note that the thermal analysis was only performed for the turbulent Reynolds once it was

proven that the imposed heat flux had no influence on the turbulent velocity profile (Re = 1000). Hence,

it won’t also have influence in the laminar regime (Re = 100).

Validation

In order to validate the physical models a basic smooth tube problem will be evaluated and compared

with the available correlations.

(a) Isothermal friction factor (b) Nusselt number

Figure 3.9: Isothermal friction factor and Nusselt number for a smooth tube
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So after the analysis two plots were obtained as it is possible to observe on the Fig. 3.9 bellow. The

left plot refers to an isothermal friction factor analysis on the tube. In this case the numerical results were

compared to the Hagen-Poiseuille equation, 2.10 (for hydrodynamically fully developed laminar regime),

to the Hrycak and Andrushkiw equation, 2.12 (for the transition regime) and finally to the Blasius and

Petukhov equations, 2.13 and 2.11 respectively (for hydrodynamically fully developed turbulent regime).

The numerical results were obtained through the Darcy-Weisbach equation, 2.9 where the pressure

drop was determined through the inlet to the outlet water interface (pressure drop report).

By plot analysis, for the laminar regime, the maximum relative error between the numerical friction

factor and the one obtained through the Hagen-Poiseuille equation was 0.03%, which is a good fitting.

As already mentioned, it was considered an instantaneous transition. So the laminar model was

used until Re = 2300 (onset of the transition regime as referred by Cruz [35] and Bergman et al. [33])

and the turbulent model was defined from Re = 2600.

With an instantaneous transition, comparing the Hrycak and Andrushkiw isothermal transition equa-

tion to the numerical results is is obvious that it will exist a huge error associated. So the maximum

relative error for the friction factor between the numerical results and the one obtained through equation

2.12 is 31.4% at Re = 2600, decreasing the error as Re increases.

For the turbulent regime the maximum relative error between the numerical friction factor and the

Blasius and Petukhov equations, are 11.61% and 5.81% respectively, for Re = 3000. Both errors also

decrease with increasing Re.

These high relative errors in transition and onset of the turbulent regime can be explained through

Andrade et al. [59]. In this paper it is mentioned that Everts and Meyer [60, 61] stated that the transition

flow regime can be divided into two flow regimes which are the transitional and the quasi-turbulent

regimes. Identifying the onset of transitional regime is easier than the end of it. Therefore the start of the

quasi-turbulent flow regime becomes not clear, which can bring implications on accurately identifying

the start of the turbulent flow regime. Nevertheless, through their work it was possible to define the

transition zone for the smooth tube, which starts from Re ≈ 2300 (as previously mentioned) and ends at

Re ≈ 3000.

In conclusion, it is acceptable to have higher relative errors for the quasi-turbulent regime. From

Re ≈ 3000, where the turbulent regime begins, the errors start to decrease reaching 31% (Blasius) and

0.54% (Petukhov) at Re = 5000, compared to the numerical results. So the obtained results become

valid. Note that in the Results chapter 4 it will be considered a transition region for the smooth tube of

Re = 2300− 3000 in order to be in agreement with Andrade et al. [59].

Now, for the heat transfer on the smooth tube, the average numerical Nusselt number on the wet

surface of the tube will be compared to the theoretical Nusselt number of the laminar regime, 2.29, and

to the Gnielinski correlation for a hydrodynamiaclly and thermally fully developed turbulent regime, 2.30.

In order to determine the numerical average Nusselt number different parameters were previously

obtained through numerical analysis. Therefore it was made a surface average report on the wet surface

to determine the wall temperature (Tw), a mass flow average report on the inlet interface surface to

determine the mean inflow temperature (Tm,i) and a mass flow average report on the outlet interface
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surface to determine the mean outflow temperature (Tm,o). Then equation 2.21 was used to obtain the

convective heat transfer coefficient (h). Note that the mean temperature (Tm) was determined through

the average (Tm,i + Tm,o)/2. This is acceptable since there is a small size domain (small corrugated

tubes) where the inflow and the outflow temperatures are very close (more a linear temperature growth

which in comparison to a long tube will have a logarithmic growth). One should also note that Ts = Tw.

Finally, with h, using equation 2.21, where D = Di (inner tube diameter) and k from table 3.4, the

numerical Nusselt number was calculated. It is important to know that this procedure was used for all

the tested tubes.

Thus analysing the right plot of Fig. 3.9 the maximum relative error between the laminar numerical

Nu and the theoretical one is 0.35% which is a good fitting. In the other hand, the maximum relative error

between the turbulent Nu and the Gnielinski correlation is 24.31% for Re = 3000, decreasing to 7.93%

for Re = 5000. As specified by Ammar and Park [46] the Gnielinski correlation has an error of ±20%.

Being this said, despite the error spike at Re = 3000, as the Reynolds increases, being further away from

the quasi-turbulent regime, the error start to decrease and therefore the turbulent results also become

acceptable. It is worth noting that transition Nusselt was not analysed due to the lack of correlations.

With this analysis one can conclude that the smooth tube case is fully validated, missing only the

corrugated tubes validation. These will be validated at the Results chapter 4, when possible, with the

available correlations.
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Chapter 4

Results

This chapter will start with the corrugated tubes validation with the available empirical correlations. Then

the objectives from section 1.3 will be analyzed and discussed. Finally, the optimum working conditions

will be described for the tubes with 6 mm pitch and 0.4, 0.5 and 0.6 mm corrugation height, for the tubes

with 9 mm pitch and 0.4, 0.5 and 0.6 mm corrugation height and at last for the tubes with 12 mm pitch

and 0.4, 0.5 and 0.6 mm corrugation height. Note that all the studies were performed for Re = 100−3000.

Also note that a different nomenclature from Table 3.1 and 3.2 in the following chapters is used in order

to be more clear which tubes are being analyzed in graphs and in order to better display of the data in

the result tables.

4.1 Corrugated tubes validation

As per Implementation’s section 3 last statement, in this section the corrugated tubes validation will be

analyzed.

One should note that from now on in all the represented plots the black line will always represent the

smooth tube’s numerical results, the lines with circles the numerical results for the tubes with 6mm pitch,

the lines with triangles the numerical results for the tubes with 9 mm pitch and the lines with squares

the numerical results for the tubes with 12 mm pitch. One should also note that for each of these groups

of lines the darker the colour the higher the corrugation (0.4, 0.5 and 0.6 mm). In the work of Cruz [35],

in order to distinguish the different tubes, the severity index (equation 2.38) was used instead. This

approach was not chosen due to very similar severity index values which could induce some confusion.

As stated at transition regime subsection of Implementation section 3 it was considered an instanta-

neous transition region for all the tubes were the critical Reynolds number for the onset of the transition

region was determined through correlation 2.39 given by Vicente et al. [50]. This correlation confirms

that the main parameter responsible for the advance or delay of the onset of the transition region in

the corrugated tubes is the corrugation height. The determined critical Re for the 3 different corrugation

heights (0.6, 0.5 and 0.4 mm) with 15% accuracy are ≈ 753, ≈ 807 and ≈ 879 respectively (lower margin).

It is very clear that the higher the corrugation the lower the critical Reynolds. However, as the values
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are very similar and in order to ease the analysis the transition region was then defined for the range of

Reynolds Re = 700 − 850. This range is acceptable once Cruz [35], through empirical analysis for the

tubes with 0.4 mm corrugation height, determined that the transition range was given by Re = 850−1000

mentioning that it could even be extended to Re = 700− 1100 to better fit some numerical results.

So for these conditions the following results are presented.

4.1.1 Friction factor

Analyzing the isothermal friction factor, between all the nine corrugated tubes, one can start by inspect-

ing the three tubes with 0.4 mm corrugation height and 12, 9 and 6 mm pitch (Fig. 4.1, 4.2 and 4.3

below). The reason is that these were the same parameter tubes studied by Cruz [35] and therefore

there are more experimental results to support the numerical data and validate it.

As previously explained for the smooth tube validation, the numerical results were obtained through

the Darcy-Weisbach equation 2.35 where the pressure drop was determined through the inlet to the

outlet water interface of the corrugated tube (pressure drop report).

So with this, for the laminar region (Re = 100 − 700 in red) the numerical data was compared to the

laminar friction factor correlation 2.37 obtained by Vicente et al. [50].

In this range, comparing Vicente’s laminar correlation to the laminar numerical results for the tube

with 12 mm pitch and 0.4 mm corrugation height (Fig. 4.1) it is possible to observe that the maximum

relative error of the numerical data compared to the empirical one is 8.2% at Re = 100 decreasing until

5.5% at Re = 700.

Figure 4.1: Isothermal friction factor of the helical corrugated tube with p = 12 mm and e = 0.4 mm

For the tube with 9 mm pitch and 0.4 mm corrugation height (Fig. 4.2) it is possible to observe that
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Figure 4.2: Isothermal friction factor of the helical corrugated tube with p = 9 mm and e = 0.4 mm

Figure 4.3: Isothermal friction factor of the helical corrugated tube with p = 6 mm and e = 0.4 mm

the maximum relative error of the numerical data compared to the empirical one is 7.7% at Re = 100

decreasing until 2% at Re = 700.

Finally, for the tube with 6 mm pitch and 0.4 mm corrugation height (Fig. 4.3) it is possible to observe

that the maximum relative error of the numerical data compared to the empirical one is 5% at Re = 100,
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decreasing until 0.4% at Re = 400 and again increasing to 4.3% at Re = 700.

These errors indicate that for these three tubes there is a higher accuracy for the laminar friction

factor results for a higher laminar Reynolds number.

For the turbulent regime (Re = 850−3000 in green) the numerical data was compared to the turbulent

friction factor correlation 2.40 obtained by Vicente et al. [17]. In this case, as the correlation depends

not only of Re′ and Pr but also the Severity Index φ, Vicente et al. [17] advises to evaluate the turbulent

regime at a constant Reynolds number of 8000 which was considered for all the tubes due to all the

calculated severity indexes (table 3.1) being φ > 10−3 (considered a medium-high corrugation).

In this range, comparing Vicente’s turbulent correlation to the turbulent numerical results for the tube

with 12 mm pitch and 0.4 mm corrugation height (Fig. 4.1) it is possible to observe that the maximum

relative error of the numerical data compared to the empirical one is 28.4% at Re = 3000 decreasing

until 2.7% at Re = 1000 and again increasing to 11.2% at Re = 850.

For the tube with 9 mm pitch and 0.4 mm corrugation height (Fig. 4.2) it is possible to observe that

the maximum relative error of the numerical data compared to the empirical one is 19.5% at Re = 3000

decreasing until 2.1% at Re = 1150 and again increasing to 8.9% at Re = 850.

Finally, for the tube with 6 mm pitch and 0.4 mm corrugation height (Fig. 4.3) it is possible to observe

that the maximum relative error of the numerical data compared to the empirical one is 9.1% at Re = 850,

decreasing until 1.2% at Re = 1500 and again increasing to 3.8% at Re = 3000.

The high relative error at Re = 850 in the three cases is cause of the proximity to the transition region.

One can also verify that the higher the turbulent Re the higher the relative error (opposite to what it is

expected) which can be explained by the fact that it is used a constant Vicente turbulent correlation due

to low turbulent Reynolds numbers.

As already mentioned Cruz [35] performed some experimental studies and used the testing kit illus-

trated at Fig. 4.4 where the pressure drop (∆P1) was measured from the inlet of the test section to the

outlet (which represents a length of 780 mm) and the pressure drop (∆P2) was measured from the last

third of the test section to the outlet of it with pressure sensors.

Figure 4.4: Experimental test section scheme [35]

With the test Cruz verified that hydrodynamic fully developed conditions in the tested corrugated

tubes could be fully assured in the last third of the test section (friction factor f2). These conditions are

represented in the plots by the blue curve. Pink line represents the experimental friction factor f1 through

the whole testing tube.
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Comparing these empirical results with the numerical friction factor results for the 3 corrugated tubes

with 0.4 mm corrugation height and 12, 9 and 6 mm pitch (Fig. 4.1, 4.2 and 4.3 above) one can observe

that the experimental friction factor f2 has always higher values than the numerical ones (over esti-

mated). Cruz says that this happens due to welding problems either in the tube connections or eventual

not visible leaks in sensors.

Note that experimental friction factor f2 has always higher values then the experimental friction factor

f1 being an exception the corrugated tube with 9 mm pitch and 0.4 mm corrugation height which has the

two lines practically overlapped.

Despite the empirical results uncertainty not covering the numerical results one can affirm that the

flow regimes in each case have a good compatibility for the flow behavior described by the numerical

results emphasizing also the transition region for each case (which confirms a good decision for the

transition range). In this case friction factor f1 for the three cases fits better the transition region than

the friction factor f2. Note that the empirical results uncertainty is represented at Fig. 4.1, 4.2 and 4.3

however due to very small variation it may be difficult to see it in some cases.

In general, for the three cases, friction factor f1 fits better all the numerical results which is in accor-

dance with Cruz [35] work. Through Vicente’s formulas and Cruz’s experimental data one can affirm that

the 3 corrugated tubes with 0.4 mm corrugation height and 12, 9 and 6 mm pitch are hydrodynamically

validated.

Figure 4.5: Isothermal friction factor of the helical corrugated tube with p = 12 mm and e = 0.5 mm

Now, one can perform the same analysis for the remaining corrugated tubes. Note that the following

corrugated tubes with 0.5 and 0.6 corrugation heights do not have empirical data from Cruz for validation.

Being that said, for the laminar regime (Re = 100− 700), comparing Vicente’s laminar correlation to
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Figure 4.6: Isothermal friction factor of the helical corrugated tube with p = 9 mm and e = 0.5 mm

Figure 4.7: Isothermal friction factor of the helical corrugated tube with p = 6 mm and e = 0.5 mm

the laminar numerical results for the tube with 12 mm pitch and 0.5 mm corrugation height (Fig. 4.5) it

is possible to observe that the maximum relative error of the numerical data compared to the empirical

one is 10.6% at Re = 100 decreasing until 2.5% at Re = 700.

For the tube with 9 mm pitch and 0.5 mm corrugation height (Fig. 4.6) it is possible to observe that
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the maximum relative error of the numerical data compared to the empirical one is 7.8% at Re = 100,

decreasing until 0.5% at Re = 400 and again increasing to 4.9% at Re = 700.

Finally, for the tube with 6 mm pitch and 0.5 mm corrugation height (Fig. 4.7) it is possible to observe

that the maximum relative error of the numerical data compared to the empirical one, opposite to the

previous two tubes, is 16.2% at Re = 700, decreasing until 0.5% at Re = 100.

These relative errors indicate that the tubes with 12 and 9 mm pitch and 0.5 mm corrugation height

also have a higher accuracy for the laminar friction factor results for a higher laminar Reynolds number

which is opposite to the one with 6 mm pitch and 0.5 mm corrugation height. In this last case the

convergence for some Re can be improved to reduce the relative error.

For the turbulent regime (Re = 850−3000), comparing Vicente’s turbulent correlation to the turbulent

numerical results for the tube with 12 mm pitch and 0.5 mm corrugation height (Fig. 4.5) it is possible to

observe that the maximum relative error of the numerical data compared to the empirical one is 21.6%

at Re = 3000 decreasing until 2.7% at Re = 850.

For the tube with 9 mm pitch and 0.5 mm corrugation height (Fig. 4.6) it is possible to observe that

the maximum relative error of the numerical data compared to the empirical one is 8.7% at Re = 3000

decreasing until 1.1% at Re = 1150 and again increasing to 8.3% at Re = 850.

Finally, for the tube with 6 mm pitch and 0.5 mm corrugation height (Fig. 4.7) it is possible to ob-

serve that the maximum relative error of the numerical data compared to the empirical one is 19.6% at

Re = 850, decreasing until 6.1% at Re = 3000.

The high relative error at Re = 850 in the tubes with 9 and 6 mm pitch and 0.5 mm corrugation height

is because of the proximity to the transition region. One can also verify that the higher the turbulent Re

the higher the relative error in the tubes with 12 and 9 mm pitch and 0.5 mm corrugation height (opposite

to what it is expected) which can be explained by the fact that it is used a constant Vicente turbulent

correlation due to low turbulent Reynolds numbers. This case does not happen to the tube tubes with

6 mm pitch and 0.5 mm corrugation height.

Due to the similarity in the flow profiles and relative errors to the 0.4 mm corrugated tubes, the 3

corrugated tubes with 0.5 mm corrugation height and 12, 9 and 6 mm pitch can be considered hydrody-

namically validated.

Now for the last three tubes, for the laminar regime (Re = 100 − 700), comparing Vicente’s laminar

correlation to the laminar numerical results for the tube with 12 mm pitch and 0.6 mm corrugation height

(Fig. 4.8) it is possible to observe that the maximum relative error of the numerical data compared to the

empirical one is 11.5% at Re = 100 decreasing until 2.1% at Re = 700.

For the tube with 9 mm pitch and 0.6 mm corrugation height (Fig. 4.9) it is possible to observe that

the maximum relative error of the numerical data compared to the empirical one is 13% at Re = 700,

decreasing until 1.6% at Re = 250 and again increasing to 5.9% at Re = 100.

Finally, for the tube with 6mm pitch and 0.6mm corrugation height (Fig. 4.10) it is possible to observe

that the maximum relative error of the numerical data compared to the empirical one is 31% at Re = 700,

decreasing until 7.2% at Re = 100.

These relative errors indicate that the tube with 12 mm pitch and 0.6 mm corrugation height also

45



Figure 4.8: Isothermal friction factor of the helical corrugated tube with p = 12 mm and e = 0.6 mm

Figure 4.9: Isothermal friction factor of the helical corrugated tube with p = 9 mm and e = 0.6 mm

have a higher accuracy for the laminar friction factor results for a higher laminar Reynolds number. The

opposite happens to the ones with 9 and 6 mm pitch and 0.6 mm corrugation height. In these two last

cases the convergence for some Re can be improved to reduce the relative error.

For the turbulent regime (Re = 850−3000), comparing Vicente’s turbulent correlation to the turbulent
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Figure 4.10: Isothermal friction factor of the helical corrugated tube with p = 6 mm and e = 0.6 mm

numerical results for the tube with 12 mm pitch and 0.6 mm corrugation height (Fig. 4.8) it is possible to

observe that the maximum relative error of the numerical data compared to the empirical one is 25% at

Re = 3000, decreasing until 2.2% at Re = 1000 and increasing again 2.7% at Re = 850.

For the tube with 9 mm pitch and 0.6 mm corrugation height (Fig. 4.9) it is possible to observe that

the maximum relative error of the numerical data compared to the empirical one is 14% at Re = 3000

decreasing until 1.2% at Re = 1500 and again increasing to 13.5% at Re = 850.

Finally, for the tube with 6 mm pitch and 0.6 mm corrugation height (Fig. 4.10) it is possible to

observe that the maximum relative error of the numerical data compared to the empirical one is 32.9%

at Re = 850, decreasing until 14.7% at Re = 3000.

The high relative error at Re = 850 in the tubes with 9 and 6 mm pitch and 0.6 mm corrugation height

is because of the proximity to the transition region. One can also verify that the higher the turbulent Re

the higher the relative error in the tubes with 12 and 9 mm pitch and 0.6 mm corrugation height (opposite

to what it is expected) which once again can be explained by the fact that it is used a constant Vicente

turbulent correlation due to low turbulent Reynolds numbers. This case does not happen to the tube

tubes with 6 mm pitch and 0.6 mm corrugation height.

Once again, due to the similarity of the flow profiles and relative errors to the 0.4 mm corrugated

tubes, the 3 corrugated tubes with 0.6 mm corrugation height and 12, 9 and 6 mm pitch can be consid-

ered hydrodynamically validated.
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4.1.2 Nusselt number

Taking the same approach for the average Nusselt number, one can also start by inspecting the three

tubes with 0.4 mm corrugation height and 12, 9 and 6 mm pitch (Fig. 4.11, 4.12 and 4.13 below).

As explained for the smooth tube validation, in order to determine the numerical average Nusselt

number different parameters are needed to obtain through numerical analysis. It was made a surface

average report on the wet surface to determine the wall temperature (Tw), a mass flow average report

on the inlet interface surface to determine the mean inflow temperature (Tm,i) and a mass flow average

report on the outlet interface surface to determine the mean outflow temperature (Tm,o). Then equation

2.21 was used to obtain the convective heat transfer coefficient (h). Note that the mean temperature

(Tm) was determined through the average (Tm,i+Tm,o)/2. One can accept these values since there is a

small size domain (small corrugated tubes) where the inflow and the outflow temperatures are very close

(more a linear temperature growth which in comparison to a long tube will have a logarithmic growth).

One should also note that Ts = Tw. Finally, with h, using equation 2.36, where D = Dh (hydraulic

diameter) and k from table 3.4, the numerical Nusselt number is calculated.

Figure 4.11: Nusselt number of the helical corrugated tube with p = 12 mm and e = 0.4 mm

In each Fig. 4.11, 4.12 and 4.13 there is a pink line that represents Cruz [35] experimental results.

For the laminar regime (Re = 100 − 700) one can observe that the numerical results have a similar

behavior as the smooth tube laminar regime which means that the heat transfer is almost constant.

In the other hand, for the experimental laminar results, the higher the Re the higher the Nu. This

happens because Cruz’s experimental setup wasn’t long enough to allow the flow to assure thermal fully

developed conditions which were only guaranteed for the turbulent regime.

Relative to the transition region it is clear that the same was well defined for the three tubes once the
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Figure 4.12: Nusselt number of the helical corrugated tube with p = 9 mm and e = 0.4 mm

Figure 4.13: Nusselt number of the helical corrugated tube with p = 6 mm and e = 0.4 mm

experimental curve fits well the numerical data.

Now for the turbulent regime, Re = 850 − 3000 the same behaviour of the smooth tube is also

obtained. As can be observed the Nu starts to grow rapidly after the transition which implies that there

is a higher heat transfer through the corrugated tube wall, being this one higher for a higher Re. The
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Figure 4.14: Nusselt number of the helical corrugated tube with p = 12 mm and e = 0.5 mm

Figure 4.15: Nusselt number of the helical corrugated tube with p = 9 mm and e = 0.5 mm

experimental data uncertainty has a good fitting for the numerical data in this regime.

The numerical results in the turbulent regime were also compared to the Vicente’s turbulent Nusselt

correlation 2.41. As the turbulent Vicente’s friction factor, this correlation is also only valid for a very high

Reynolds numbers (Re′ = 8000 − 60000). However, the expression was used for Reynolds 2300 and
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Figure 4.16: Nusselt number of the helical corrugated tube with p = 6 mm and e = 0.5 mm

Figure 4.17: Nusselt number of the helical corrugated tube with p = 12 mm and e = 0.6 mm

3000 once other way there would not exist any correlations to cover this regime.

Comparing the correlation’s results for these two Reynolds numbers to the turbulent numerical results

of the tubes with 0.4 mm corrugation height and 12, 9 and 6 mm pitch one can obtain the following

relative errors: 5.9% and 17.1% (Fig. 4.11), 7.5% and 15.8% (Fig. 4.12) and 7% and 17.3% (Fig. 4.13)
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Figure 4.18: Nusselt number of the helical corrugated tube with p = 9 mm and e = 0.6 mm

Figure 4.19: Nusselt number of the helical corrugated tube with p = 6 mm and e = 0.6 mm

respectively.

As it is possible to verify the relative errors are very high which can be justified due to the fact that

the correlation is being used for too low Reynolds numbers.

There were not found any empirical correlations for the laminar regime for the average Nusselt num-
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ber for the corrugated tubes. Despite that, with the good fitting of the numerical results with Cruz’s

experimental data for the tubes with 0.4 mm corrugation height and 12, 9 and 6 mm pitch, one can

consider that these tubes are thermally validated.

Now the same analysis can be performed for the remaining tubes (only turbulent regime due to lack

of laminar correlations).

For the tubes with 0.5 mm corrugation height and 12, 9 and 6 mm pitch, and for Reynolds 2300

and 3000, one can obtain the following relative errors: 10.3% and 13.9% (Fig. 4.14), 8.4% and 14.1%

(Fig. 4.15) and 2.2% and 21.3% (Fig. 4.16) respectively.

Then for the tubes with 0.6 mm corrugation height and 12, 9 and 6 mm pitch, and for Reynolds

2300 and 3000, one can obtain the following relative errors: 2.7% and 21% (Fig. 4.17), 3.5% and 22.9%

(Fig. 4.18) and 4.4% and 19.6% (Fig. 4.19) respectively.

Once again the relative errors are very high which can be justified due to the fact that the correlation

is being used for too low Reynolds numbers.

Due to the lack of correlations for the laminar regime and a poor accordance of the Vicente’s Nusselt

turbulent correlation with the turbulent numerical Nusselt number the 3 tubes with 0.5 mm corrugation

height and 12, 9 and 6 mm pitch and the 3 tubes with 0.6 mm corrugation height and 12, 9 and 6 mm

pitch cannot be thermally validated. Empirical analysis should be done to thermally verify each one of

them.

Despite the non-validation, the results will still be used to find the optimum working conditions of the

corrugated tubes comparing to the smooth tube isothermal friction factor and average Nusselt number.

4.2 f vs Re

Now that all the corrugated tubes are hydrodynamically validated one can compare them with the results

obtained for the smooth tube and check what is their behavior throughout the different flow regimes.

As previously described in the beginning of the Results chapter all the data was analysed for a

Reynolds range of Re = 100−3000. At Fig. 4.20 it is possible to observe a general view of the isothermal

friction factor for the different corrugated tubes compared to the smooth tube for the full range. Note that

a result for Re = 4000 was presented for the smooth tube once its transition region ends at Re = 3000

and otherwise there wouldn’t be any values for the turbulent regime represented on the chart.

Having a closer look to the laminar region Re = 100 − 700 (Fig. 4.21) is it possible to confirm that

all the corrugated tubes have a higher isothermal friction factor than the smooth tube being the tube

with 6 mm pitch and 0.6 mm corrugation height the worst of all and the smooth tube the best. All the

tubes represent the same downtrend having the highest values at a lower Re and then decreasing as

we approach the transition region.

Now regarding the turbulent regionRe = 850−3000 (Fig. 4.22) one can realize that after the transition

(Re = 700 − 850) all the tube had an increase in the friction factor values, especially the ones with a

higher corrugation height and lower pitch slightly decreasing as the Re in the turbulent region grows.

It is easy to verify that the transition region of the corrugated tubes (Re = 700 − 850) occurs way
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Figure 4.20: Comparison of the friction factor as function of Reynolds number for the different corrugated
tubes and smooth tube

Figure 4.21: Comparison of the friction factor as function of Reynolds number for the different corrugated
tubes and smooth tube - Close up Re = 100− 700 (laminar regime)

sooner than the smooth tube’s one (Re = 2300 − 3000) and therefore the smooth tube for the range

of Re = 700 − 2300 has lower and therefore better values of isothermal friction factor once it is still in

the laminar regime. However, once the smooth tube becomes turbulent the friction factor becomes very
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Figure 4.22: Comparison of the friction factor as function of Reynolds number for the different corrugated
tubes and smooth tube - Close up Re = 850− 3000 (turbulent regime)

similar but still better than all the corrugated tubes being again the tube with 6 mm pitch and 0.6 mm

corrugation height the worst of all. The tube with 12 mm pitch and 0.4 mm corrugation height, despite

having a higher isothermal friction factor than the smooth tube still performs better in this regime then

the rest of the corrugated tubes.

4.2.1 Friction Augmentation Factor

After the qualitative analysis one can make a quantitative one through the friction augmentation factor

comparison with the smooth tube. In the figure below (Fig. 4.23) it is possible to observe the general

view for all the tubes for the friction augmentation factor throughout all the flow regimes and at table 4.1

all the correspondent values.

Having a closer look on the laminar and transition region (Fig. 4.24 one can verify that the tube with

12 mm pitch and 0.4 mm corrugation height has the closest friction values to the smooth tube having

an augmentation factor of 1.04 at Re = 100 and 1.13 at Re = 700. In the other hand the tube with

6 mm pitch and 0.6 mm corrugation height has the highest friction values for this region compared to the

smooth tube, having an augmentation factor of 1.43 at Re = 100 and 1.85 at Re = 700. As the transition

occurs, either the tube with 12 mm pitch and 0.4 mm corrugation height and the tube with 6 mm pitch

and 0.6 mm corrugation height increase their friction augmentation values to 1.47 and 3.52 respectively

for Re = 850.

For the turbulent regime (Fig. 4.23) one can observe that the friction augmentation factor starts to

increase more rapidly, practically in a linear way, obtaining its maximum of 8.4 at Re = 2300 for the tube
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Figure 4.23: Comparison of the friction augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube

Figure 4.24: Comparison of the friction augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube - Close up Re = 100− 850 (laminar and transition regime)

with 6 mm pitch and 0.6 mm corrugation height and for the same Re its lowest of 2.76 for the tube with

12 mm pitch and 0.4 mm corrugation height. Looking at the close-up represented at Fig. 4.25 it is clear

that as soon as the smooth tube becomes turbulent the friction augmentation factor gets very low for all
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Figure 4.25: Comparison of the friction augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube - Close up Re = 2300− 3000 (turbulent regime)

Table 4.1: Friction augmentation factor for the corrugated tubes compared to the smooth tube
Re p6e0.4/smooth p6e0.5/smooth p6e0.6/smooth p9e0.4/smooth p9e0.5/smooth p9e0.6/smooth p12e0.4/smooth p12e0.5/smooth p12e0.6/smooth smooth/smooth

100 1.16 1.28 1.43 1.08 1.13 1.20 1.04 1.06 1.09 1
250 1.23 1.40 1.61 1.12 1.21 1.33 1.07 1.12 1.18 1
400 1.28 1.48 1.72 1.16 1.27 1.43 1.09 1.16 1.25 1
550 1.32 1.53 1.80 1.19 1.32 1.50 1.11 1.19 1.27 1
700 1.35 1.58 1.85 1.21 1.36 1.53 1.13 1.23 1.28 1
850 1.99 2.68 3.52 1.65 2.01 2.49 1.47 1.67 1.98 1
1000 2.26 3.11 4.08 1.82 2.28 2.92 1.60 1.85 2.21 1
1150 2.55 3.54 4.62 2.01 2.54 3.18 1.74 2.04 2.47 1
1500 3.26 4.54 5.82 2.44 3.16 3.93 2.05 2.50 3.00 1
2300 4.86 6.66 8.40 3.44 4.68 5.57 2.76 3.65 4.04 1
3000 2.73 3.69 4.72 1.89 2.64 2.94 1.48 1.99 2.25 1

the tubes, becoming 4.72 for the tube with 6 mm pitch and 0.6 mm corrugation height and 1.48 for the

tube with 12 mm pitch and 0.4 mm corrugation height.This happens due to the increase of the isothermal

friction factor for the smooth tube for this region.

In conclusion, for laminar region Re = 100− 700 the friction augmentation factor tends to be slightly

higher for all the tubes. As the transition for the corrugated tubes occur there is a jump in the friction

augmentation factor which grows almost linearly for all the cases in the range of Re = 850 − 2300.

Then, when the smooth tube becomes turbulent Re = 2300 − 3000 all the friction augmentation factors

decrease becoming almost as low as the laminar ones.

4.3 Nu vs Re

As concluded in the end of Nusselt section 4.1.2 not all the corrugated tubes could be thermally validated

due to the lack of empirical correlations especially for the low Reynolds numbers. However, it was still
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decided to use the numerical results, compare them to the smooth tube and check what is their behavior

throughout the different flow regimes.

As already mentioned all the data was analysed for a Reynolds range of Re = 100−3000. At Fig. 4.26

it is possible to observe a general view of the average Nusselt number for the different corrugated tubes

compared to the smooth tube for the full range. Note that a result for Re = 4000 was presented for the

smooth tube once its transition region ends at Re = 3000 and otherwise there wouldn’t be any values for

the turbulent regime represented on the chart.

Figure 4.26: Comparison of the Nusselt number as function of Reynolds number for the different corru-
gated tubes and smooth tube

Having a closer look to the laminar region Re = 100− 700 (Fig. 4.27) is it possible to confirm that all

the corrugated tubes have in general a lower average Nusselt number than the smooth tube (opposite to

what happened to the isothermal friction factor) being the tube with 6 mm pitch and 0.6 mm corrugation

height again the worst of all.

It is known that in the laminar regime the smooth tube allows a constant heat transfer through the

walls (constant Nusselt number) while for the corrugated tubes, as it is possible to observe at Fig. 4.27,

they then to have an uptrend, having the tubes lower Nu values than the smooth tube until Re ≈ 300 and

then slightly higher values until the end of the laminar region at Re = 700 where the tube with 12 mm

pitch and 0.6 mm corrugation height has the heighest Nu value.

Now regarding the turbulent regionRe = 850−3000 (Fig. 4.28) one can realize that after the transition

Re = 700 − 850) all the tubes had an increase in the average Nusselt number, especially the ones with

a higher corrugation height and lower pitch.

As per Fig. 4.26 it is easy to verify that the transition region of the corrugated tubes (Re = 700− 850)

occurs way sooner than the smooth tube’s one (Re = 2300−3000) and therefore the smooth tube for the
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Figure 4.27: Comparison of the Nusselt number as function of Reynolds number for the different corru-
gated tubes and smooth tube - Close up Re = 100− 700 (laminar regime)

Figure 4.28: Comparison of the Nusselt number as function of Reynolds number for the different corru-
gated tubes and smooth tube - Close up Re = 850− 3000 (turbulent regime)

range of Re = 700− 2300 has way lower and therefore worst values of average Nusselt number once it

is still in the laminar regime. Once the smooth tube becomes turbulent (Fig. 4.28) the Nu jumps in value

and keeps a constant growth. However it still under performs all the corrugated tubes being again the
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tube with 6 mm pitch and 0.6 mm corrugation height now the best of all in terms of heat transfer. The

tube with 12 mm pitch and 0.4 mm corrugation height has the lowest Nu of all the corrugated tubes in

this regime but is still better than the smooth tube.

4.3.1 Nusselt Augmentation Factor

So in the same way, after the qualitative analysis one can make a quantitative one through the Nusselt

augmentation factor comparison with the smooth tube. In the figure below (Fig. 4.29) it is possible to

observe the general view for all the tubes for the Nusselt augmentation factor throughout all the flow

regimes and at table 4.2 all the correspondent values.

Figure 4.29: Comparison of the Nusselt augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube

Having a closer look on the laminar and transition region (Fig. 4.30 one can verify that in general all

the corrugated tubes similar but slightly lower values of Nu augmentation factor compared to the smooth

tube. The tube with 6 mm pitch and 0.6 mm corrugation height has the lowest augmentation factor for

this region, having an augmentation factor of 0.81 at Re = 100 and 0.98 at Re = 700. As already seen,

for some of the corrugated tubes, for Re > 300, the Nu augmentation factor has an improvement but

still very close to the smooth tube’s heat transfer capability. So for Re = 700 (at the end of the laminar

region) the tube with 12 mm pitch and 0.6 mm corrugation height obtains the maximum augmentation of

1.09.

As the transition occurs, the tube with 6 mm pitch and 0.6 mm corrugation height becomes the one

with the highest Nu augmentation factor, with 3.93 at Re = 850 and the tube with 12 mm pitch and

0.4 mm corrugation height becomes the worst with a Nu augmentation factor of 2.38 for Re = 850. All
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Figure 4.30: Comparison of the Nusselt augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube - Close up Re = 100− 850 (laminar and transition regime)

Figure 4.31: Comparison of the Nusselt augmentation factor as function of Reynolds number for the
different corrugated tubes and smooth tube - Close up Re = 2300− 3000 (turbulent regime)

the tubes have a better performance than the smooth tube after the transition.

For the turbulent regime (Fig. 4.29) one can observe that the Nusselt augmentation factor starts to

increase more rapidly, practically in a linear way (the same way that happened to the friction augmen-
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Table 4.2: Nusselt augmentation factor for the corrugated tubes compared to the smooth tube
Re p6e0.4/smooth p6e0.5/smooth p6e0.6/smooth p9e0.4/smooth p9e0.5/smooth p9e0.6/smooth p12e0.4/smooth p12e0.5/smooth p12e0.6/smooth smooth/smooth

100 0.92 0.86 0.81 0.96 0.93 0.89 0.98 0.96 0.93 1
250 0.92 0.86 0.83 0.97 0.93 0.90 1.00 0.97 0.94 1
400 0.93 0.88 0.87 0.98 0.94 0.94 1.01 0.98 0.97 1
550 0.94 0.91 0.92 1.00 1.00 1.00 1.03 1.01 1.02 1
700 0.96 0.95 0.98 1.02 1.04 1.06 1.05 1.09 1.09 1
850 2.59 3.24 3.93 2.44 2.84 3.37 2.38 2.60 3.14 1
1000 3.18 3.96 4.63 2.92 3.47 4.12 2.77 3.13 3.76 1
1150 3.80 4.61 5.25 3.42 4.08 4.60 3.19 3.66 4.33 1
1500 5.24 5.91 6.54 4.65 5.36 5.77 4.24 4.95 5.44 1
2300 7.78 8.31 9.30 7.07 7.97 8.33 6.48 7.54 7.69 1
3000 1.50 1.59 1.78 1.38 1.57 1.55 1.26 1.47 1.47 1

tation factor for this regime), obtaining its maximum of 9.3 at Re = 2300 for the tube with 6 mm pitch

and 0.6 mm corrugation height and for the same Re its lowest of 6.48 for the tube with 12 mm pitch and

0.4 mm corrugation height. Looking at the close-up represented at Fig. 4.31 it is clear that as soon

as the smooth tube becomes turbulent the Nusselt augmentation factor gets very low for all the tubes,

becoming 1.78 for the tube with 6 mm pitch and 0.6 mm corrugation height and 1.26 for the tube with

12 mm pitch and 0.4 mm corrugation height. This happens due to the increase of the average Nusselt

number for the smooth tube for this region.

In conclusion, for laminar region Re = 100− 700 the Nusselt augmentation factor tends to be slightly

lower for all the tubes. As the transition for the corrugated tubes occur there is a jump in the Nusselt

augmentation factor which grows almost linearly for all the cases in the range of Re = 850 − 2300.

Then, when the smooth tube becomes turbulent Re = 2300− 3000 all the Nusselt augmentation factors

decrease becoming almost as low as the laminar ones.

4.4 Corrugation effect on the flow

Based on the previous analysis one can now discuss and characterize the flow effects that the corruga-

tion causes to the corrugated tubes.

As already mentioned by Liebenberg and Meyer [11] at the Topic Overview chapter 2.1, the main

purpose of using passive techniques is to induce swirl and vortices at the secondary flow region which

will mix the fluid layers with the core flow and increase the wet area. Kareem et al. [3] also stated that

the main goal of the corrugation is to promote the secondary recirculation flow by inducing radial velocity

components, mixing the flow layers and finally, increasing the wet perimeter with holding the throat

cross-section area constant, which leads to an increase of the convective surface area. Therefore, the

induced swirl effect it is pointed as the main feature of the corrugated tubes. As mentioned by Cruz [35],

this effect is however mostly characterized by experimental results where its hard to analyse and obtain

a qualitative description of the resulting flow.

As per numerical analysis made for the different corrugated tubes, one can affirm that the swirl effect

produced by the corrugation transforms the inlet axial flow into a 3 dimensional flow as it is possible

to verify by the cross section views presented at Fig. 4.32, Fig. 4.33 and Fig. 4.34 below which are

decomposed into the 3 dimensional components of the velocity in cylindrical coordinates (axial, radial

and tangential respectively). The influence on the corrugated tubes can then be verified on the pressure
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losses and heat transfer through the tubes.

(a) Re = 100 (b) Re = 1000

Figure 4.32: Axial velocity for the laminar and turbulent flow regime of the tube with p = 6 mm and
e = 0.6 mm

(a) Re = 100 (b) Re = 1000

Figure 4.33: Radial velocity for the laminar and turbulent flow regime of the tube with p = 6 mm and
e = 0.6 mm

(a) Re = 100 (b) Re = 1000

Figure 4.34: Tangential velocity for the laminar and turbulent flow regime of the tube with p = 6 mm and
e = 0.6 mm

Starting by the axial velocity component, Fig. 4.32, it is possible to observe that the velocity profile

shows a similar behaviour to the one obtained for the smooth tube, Fig. 2.3. As mentioned by Cruz [35],

the continuity equation and the wall boundary condition (no-slip condition) forces the mass flow to the

center of the tube, accelerating the flow towards the center. The same behaviour was verified for the
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laminar and turbulent region. Note that the tube with 6 mm pitch and 0.6 mm corrugation height was

only chosen as an example.

Now for the radial velocity component, Fig. 4.33, it is known to have its origin due to the corrugation

geometry. As one can verify on the figure and as per Cruz [35], close to the corrugation, there is a zone

where the flow has a radial negative component of the velocity. In his work it was also referred that its

magnitude is almost 10 times higher than in the rest of the section. In this case, for the tube with 6 mm

pitch and 0.6 mm corrugation height, the magnitude is ≈ 6 times higher for the laminar region and and

≈ 7 times higher for the turbulent region. This radial velocity magnitude is very small when compared

with the magnitudes that the axial component of the velocity assumes. Therefore, and as per Cruz [35],

it can be concluded that this radial component, despite being clearly produced by the corrugation, it is

not large enough to, by itself, affect the flow significantly.

Finally, for the tangential velocity component, Fig.4.34, as it is possible to see that it induces swirls

around the tube walls to towards the corrugation. In the work of Cruz [35] it is said to have a maximum

magnitude is 10% of the axial component magnitude. In this case for the tube with 6 mm pitch and

0.6 mm corrugation height, the maximum tangential magnitude compared to the axial one is ≈ 11% for

the laminar region and and ≈ 30% for the turbulent region. Therefore, the effects of the corrugation in

the tangential velocity component are definitely more significant than in the radial one.

Overall, it is possible to confirm that the internal flow, for this example of corrugated tube, is a complex

3 dimensional flow with an induced swirl that promotes flow re-circulation and secondary flow regions

which affect the pressure losses and the heat transfer of the tube.

(a) Re = 100 (b) Re = 1000

Figure 4.35: Nusselt number for the laminar and turbulent regime of the tube with p = 6 mm and
e = 0.6 m

The corrugation has influence not only at the flow inside the corrugated tube but also in the heat

transferred throughout the walls. As it is known, an uniform heat flux is applied to the tested tube walls.

The Nusselt number was then presented at Fig. 4.35 (for laminar Re = 100 and turbulent Re = 1000

respectively) in order to study this behaviour. It is clear that inside the corrugation the Nu has a higher

value (red zone) and right after the corrugation the lowest value is achieved (blue zone) which was also

verified by Cruz [35]. In his work the low Nu after the corrugation is justified by the fact that there is a

small flow separation in that zone. In the rest of the tube the heat transfer tends to be constant (green

zone in the laminar region). For the same corrugation height, the longer the pitch the higher the area
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with constant zone of heat transferred. For the turbulent regime there is a progressive improvement of

the heat transferred from the end of one corrugation to the beginning of the next one. Once again, for

the same corrugation height, the higher the pitch the sooner the in between corrugation area stabilizes

for the Nu.

As per Cruz [35] the opposite can also happen, where the lowest Nusselt number occurs in the

corrugation depth and the highest in the zone after it, which can be justified by the re-circulation zone

induced at the corrugation.

One or another can occur depending on the pitch and the corrugation height used. Despite this it is

also important to acknowledge that there is a gradient variation along a periodic domain of the flow for

each corrugated tube, which makes one understand that the flow has a thermally pulsating behaviour.

4.5 Thermal Performance

In the previous chapters the isothermal friction factor (resultant of the pressure drop determined for

each tube) and the average Nusselt number (heat transferred by each tube) were the two parameters

that were studied and compared to the smooth tube’s numerical data. Both of them were individually

qualitatively and quantitatively analysed with the the support of the friction and Nusselt augmentation

factors respectively. However an analysis which involves the combination of these two parameters is also

needed. As per Cruz [35] this means that is relevant to have an analysis which can present a solution

where it is possible to compare and decide which corrugated tube is better in terms of balancing the

potential improvement of the heat transfer with an increased friction factor that in turn will demand a

larger pumping power. To compliment this point Webb et al. [31] also suggested in his work that the

main influential variables in order to obtain the optimum surface geometry of the flow in the tube are the

pressure drop, heat transfer rate and flow rate.

So based on this and in order to achieve this dual criteria analysis the thermal performance factor

presented in equation 4.1 below can be used.

η =
Nuc/Nus
(fc/fs)1/3

(4.1)

This equation defines the ratio of the enhanced tube heat transfer coefficient to the smooth tube at

constant pumping power and it was used by Wang et al. [49] and Pethkool et al. [51] among others.

Being this said, in the figure Fig. 4.36 below, it is possible to observe the general view for all the tubes

for the Thermal Performance factor as function of Re throughout all the flow regimes (Re = 100− 3000)

and at table 4.3 all the correspondent values.

Looking closer to the laminar region (Re = 100−700) (Fig. 4.37) one can verify that all the corrugated

tubes have a worse thermal performance than the smooth tube. This can be explained by the fact that for

this regime the corrugation works more as an obstacle then as a heat transfer enhancement technique

which makes the corrugation tubes have a higher friction factor than the smooth tube (Fig. 4.20) and a

lower heat transfer comparing to the same (Fig. 4.27).
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Figure 4.36: Comparison of the thermal performance as function of Reynolds number for the different
corrugated tubes and smooth tube

Figure 4.37: Comparison of the thermal performance as function of Reynolds number for the different
corrugated tubes and smooth tube - Close up Re = 100− 850 (laminar and transition regime)

As it is possible to see the values are slightly lower then the smooth tube’s, being the tube with 6 mm

pitch and 0.6 mm corrugation height the lowest performance for this region, having a factor of 0.72 at

Re = 100 and 0.8 at Re = 700. The tube with 12 mm pitch and 0.4 mm corrugation height has the closest
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Figure 4.38: Comparison of the thermal performance as function of Reynolds number for the different
corrugated tubes and smooth tube - Close up Re = 2300− 3000 (turbulent regime)

thermal performance to the smooth tube, having a factor of 0.97 at Re = 100 and 1.01 at Re = 700. This

happens due to the fact that this corrugated tube has a low corrugation height and therefore the closest

wet area per unit length to the smooth tube’s (Table 3.1).

As the transition occurs (Re = 700− 850) there is a boost in thermal performance and the tube with 6

mm pitch and 0.6 mm corrugation height becomes the one with the highest thermal performance factor,

2.58 for Re = 850, and the tube with 6 mm pitch and 0.4 mm corrugation height becomes with the one

with the lowest value, 2.06 for Re = 850. So all the corrugated tubes have a better performance than the

smooth tube after the transition.

Table 4.3: Thermal performance factor for the corrugated tubes compared to the smooth tube
Re p6e0.4/smooth p6e0.5/smooth p6e0.6/smooth p9e0.4/smooth p9e0.5/smooth p9e0.6/smooth p12e0.4/smooth p12e0.5/smooth p12e0.6/smooth smooth/smooth

100 0.87 0.80 0.72 0.94 0.89 0.84 0.97 0.94 0.91 1
250 0.85 0.77 0.71 0.93 0.87 0.82 0.97 0.93 0.89 1
400 0.85 0.78 0.72 0.93 0.87 0.84 0.98 0.94 0.90 1
550 0.86 0.79 0.76 0.94 0.91 0.87 0.99 0.95 0.94 1
700 0.87 0.81 0,80 0.95 0.94 0.92 1.01 1.02 1.00 1
850 2.06 2.33 2.58 2.07 2.25 2.49 2.09 2.19 2.50 1
1000 2.42 2.71 2.90 2.39 2.64 2.89 2.37 2.55 2.88 1
1150 2.78 3.03 3.15 2.71 2.99 3.13 2.66 2.89 3.20 1
1500 3.53 3.57 3.64 3.45 3.65 3.66 3.33 3.65 3.77 1
2300 4.60 4.42 4.58 4.68 4.76 4.70 4.61 4.90 4.83 1
3000 1.07 1.03 1.06 1.11 1.14 1.08 1.11 1.17 1.12 1

For the turbulent regime presented at Fig. 4.36 (Re = 850− 3000) one can observe that the thermal

augmentation factor starts to increase more rapidly, practically in a linear way (the same behaviour as

the friction augmentation factor and Nusselt augmentation factor for this regime), obtaining its maximum

of 4.9 at Re = 2300 for the tube with 12 mm pitch and 0.5 mm corrugation height and for the same Re

its lowest of 4.42 for the tube with 6 mm pitch and 0.5 mm corrugation height. In the middle section,
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for Reynolds between 850 and 2300 the tube with 12 mm pitch and 0.6 mm corrugation height prevails

with the highest thermal performance factor. There is such high thermal performance factor values in

this range once the smooth tube is still in the laminar region and due to secondary flow resulting from

vorticity.

Looking at the close-up represented at Fig. 4.38 it is clear that as soon as the smooth tube becomes

turbulent (from Re = 3000) the thermal performance factor gets very low for all the corrugated tubes,

having a maximum of 1.17 at Re = 3000 for the tube with 12 mm pitch and 0.5 mm corrugation height

and having a minimum of 1.03 at Re = 3000 for the tube with 6 mm pitch and 0.5 mm corrugation height.

As already mentioned this happens due to the increase of the heat transfer for the smooth tube for this

region.

In conclusion, for laminar region Re = 100− 700 the thermal augmentation factor tends to be slightly

lower for all the tubes. As the transition for the corrugated tubes occur there is a jump in the thermal

performance which grows almost linearly for all the cases in the range of Re = 850− 2300. Then, when

the smooth tube becomes turbulent Re = 2300 − 3000 all the thermal performance factors decrease

becoming almost as low as the laminar ones.

Comparing these results with the ones obtained by Cruz [35] one can say that the thermal perfor-

mance chart from his study demonstrate the same behaviour of the one here presented. However, one

should note that for the laminar thermal performance factor, the results presented by his work are very

high and better than the smooth tubes ones which can be explained by the fact that in his experimental

work it was not possible to obtain thermally fully developed conditions for the laminar region as it is

possible to see at Fig. 4.11, Fig. 4.12 and Fig. 4.13. In his work he also defines the region with the

best thermal performance which goes from Re = 1000 (post corrugation tube transition) to Re = 2000

(pre smooth tube transition) and in fact it corresponds to the same here obtained (Re = 850− 2300). In

the turbulent regime he also presented lower values of thermal performance factor being those similar

to the ones determined for the laminar regime.

These results also come in accordance to Kareem et al. [3] who concluded that for the analysis

made for all the regimes (laminar, transition and turbulent) and in terms of optimization, the heat transfer

is always accompanied with pressure drop which has higher values for a turbulent flow.

4.6 Pareto Efficiency Curve

Once the data from the thermal performance factor it is not enough to characterize the optimum flow

working conditions for a heat exchanger it was also performed a multi-objective optimization study which

determined the Pareto efficiency presented at Fig. 4.39. This study has the aim to verify the work-

ing conditions where it is possible to minimize the volume per heat transferred across the wall while

minimizing pumping power.

As the heat flux through the walls of the different tubes is constant, the heat transferred is also

constant. With a constant wet volume for each tube, in the chart one can observe horizontal lines once

the volume per heat transferred (y axis) ends up being also constant which means that it is independent
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Figure 4.39: Pareto efficiency curve for the different corrugated tubes and smooth tube

of the pumping power per unit volume (x axis). This behaviour it is not verified for example at Guerra [62]

and Passos [63] work once in their case there is a constant temperature imposed to the walls instead of

a constant heat flux boundary condition.

So based on the results on Fig. 4.36 where it was concluded that the best thermal performance is

achieved in the range Re = 850− 2300 and based on the Fig. 4.39 where it is intended to minimize the

volume per heat transferred across the wall while minimizing pumping power, it is possible to affirm that

the most efficient working conditions happen for the tube with 6 mm pitch and 0.6 mm corrugation height

for Re = 850. In case the best thermal performance is needed the tube with 12 mm pitch and 0.5 mm

corrugation height for Re = 2300 can be chosen at a cost of a higher pumping power and higher volume

per heat transferred.

Note that a higher pumping power implies a higher Reynolds number (along the x axis) being the

last three dots to the right (of each curve) the pumping power corresponding to Re = 1500, 2300 and

3000 respectively. The lower Reynolds numbers (Re = 100 − 1150) dots are almost all together (for

each curve) near to the y axis (volume per heat transferred) requiring then a lower pumping power.

Being more precise, the highest pumping power for the laminar regime (Re = 100 − 700) goes for the

corrugated tube with 6 mm pitch and 0.6 mm corrugation height with a value of 52 W/m3 for Re = 700.

The lowest pumping power for the laminar regime goes for the corrugated tube with 12 mm pitch and

0.4 mm corrugation height with a value of 30.1 W/m3 for Re = 700. Finally, for the turbulent region

Re = 850− 300, the highest pumping power the happens again for the corrugated tube with 6 mm pitch

and 0.6 mm corrugation height with a value of 5524.1 W/m3 for Re = 3000 and the lowest pumping

power the happens again for the corrugated tube with 12 mm pitch and 0.4 mm corrugation height with

a value of 1637 W/m3 for Re = 3000.
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One can also observe that the smooth tube has similar values of pumping power to the tube with

9 mm pitch and 0.6 mm corrugation height however its volume per heat transferred is higher than all

the other corrugated tubes. Despite this value being higher for the smooth tube, in general, in terms of

magnitude they are all very close varying main in the pumping power which has an almost exponential

growth as the Reynolds number increase.
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Chapter 5

Conclusions

5.1 Work Summary

In this work the internal flow of 9-off corrugated tubes with pitch (p = 6, 9, 12 mm) and corrugation height

(e = 0.4, 0.5, 0.6 mm) was characterized. The study was performed for Re = 100−3000 which goes from

laminar to turbulent regime not only for the corrugated tubes but also for the smooth tube. The main

aim was to optimize the flow and verify the influence of the corrugation geometry on the pressure losses

and heat transfer. Water was used as a working fluid and all the properties were evaluated at a constant

temperature of 300K. The main boundary condition was the constant heat flux of 100 kW/m2 that was

imposed on the tube wall. A numerical model was developed with the CFD software STAR-CCM+, where

the k − ω SST model was used to model the turbulence. The transition region was considered to be

instantaneous.

Being this said, numerical analysis were first performed for the smooth tube. Their validation was

important once only then it was possible to use the results as a comparison to the corrugated tubes. After

that the corrugated tubes numerical results were obtained and validated with the available empirical data

and Cruz [35] experimental data. After validation a comparison was made between all the corrugated

tubes and the smooth tube. Note that all the results were evaluated for hydrodynamically and thermally

fully developed conditions.

5.2 Main Conclusions

Finally, the following main conclusions can be presented:

• Corrugation induces a swirl promoting recirculating flow regions which decrease the critical Reynolds

number and anticipate onset of the transition region;

• A higher corrugation height implies a faster transition;

• Thermal hot-spots with pulsating thermal behaviour were identified along a periodic corrugated

tube domain;
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• The best performance for the corrugation geometries was for Re = 850 − 2300 where it is verified

an almost linear growth;

• The tube with p = 6 mm and e = 0.6 mm was the best in terms of thermal performance factor for

Re = 850 with a value of 2.58, the tube with p = 12 mm and e = 0.5 mm was the best for Re = 2300

with a value of 4.9 and the tube with p = 12 mm, e = 0.6 mm was the best in between;

• For Re = 100 − 700 the corrugated tubes show a lower thermal performance compared to the

smooth tube and therefore it doesn’t justify the use of a corrugated geometry;;

• For Re = 3000 the thermal performance is similar and also doesn’t justify the use of a corrugated

geometry;

• For constant heat flux and wet volume for each tube the heat transferred across the wall becomes

constant and independent of the pumping power;

• In order to the heat exchanger to work with improved thermal performance and lower pumping

power one should use the tube with p = 6 mm and e = 0.6 mm at Re = 850;

• In order to the heat exchanger to work with the maximum thermal performance one should use

the tube with p = 12 mm, e = 0.5 mm at Re = 2300 with a cost of a higher pumping power and a

higher volume per transferred heat.

5.3 Recommendation for Future Work

After the main conclusions presented in the chapter above one can suggest a few improvements that

can me made about the work here presented and a few other points to explore as an additional and

complementing information for this research.

So the following points are presented:

• Expand the analysis for higher Reynolds numbers (Re > 3000) once the smooth tube’s transition

occurs very late and improve the numerical analysis (better convergence);

• Redo the experimental analysis for the 3-off tubes with 6, 9 and 12 mm pitch and 0.4 mm corru-

gation height and make experimental analysis for the 3-off tubes with 6, 9 and 12 mm pitch and

0.5 mm corrugation height and the 3-off tubes with 6, 9 and 12 mm pitch and 0.6 mm in fully devel-

oped hydrodynamic and thermal conditions in order to allow a better numerical results validation;

• Test the corrugated tubes in comparison with the smooth tube with a different test fluid (different

Prandtl number);

• Test the corrugated tubes in comparison with the smooth tube with the constant wall temperature

boundary condition instead of constant heat flux;

72



• Develop a double heat pipe heat exchanger or a compact heat exchanger made with the different

corrugated tubes in order to evaluate the thermal performance and pumping power impact, both

numerically and experimentally;
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[55] D. C. Wilcox et al. Turbulence modeling for CFD, volume 2. DCW industries La Canada, CA, 1998.

[56] F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA

journal, 32(8):1598–1605, 1994.
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